Cargando…
Does Lorentz-symmetric design boost network performance in jet physics?
In the deep learning era, improving the neural network performance in jet physics is a rewarding task as it directly contributes to more accurate physics measurements at the LHC. Recent research has proposed various network designs in consideration of the full Lorentz symmetry, but its benefit is st...
Autores principales: | Li, Congqiao, Qu, Huilin, Qian, Sitian, Meng, Qi, Gong, Shiqi, Zhang, Jue, Liu, Tie-Yan, Li, Qiang |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2847441 |
Ejemplares similares
-
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022) -
Particle Transformer for Jet Tagging
por: Qu, Huilin, et al.
Publicado: (2022) -
$C$-parameter hadronisation in the symmetric 3-jet limit and impact on $\alpha_s$ fits
por: Luisoni, Gionata, et al.
Publicado: (2020) -
Jet Energy Calibration with Deep Learning as a Kubeflow Pipeline
por: Holmberg, Daniel, et al.
Publicado: (2023) -
Prospects for Lorentz-Violation Searches with Top Pair Production at the LHC and Future Colliders
por: Carle, A., et al.
Publicado: (2020)