Cargando…
Lorentz Group Equivariant Autoencoders
There has been significant work recently in developing machine learning (ML) models in high energy physics (HEP) for tasks such as classification, simulation, and anomaly detection. Often these models are adapted from those designed for datasets in computer vision or natural language processing, whi...
Autores principales: | Hao, Zichun, Kansal, Raghav, Duarte, Javier, Chernyavskaya, Nadezda |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-023-11633-5 http://cds.cern.ch/record/2847556 |
Ejemplares similares
-
Lorentz group equivariant autoencoders
por: Hao, Zichun, et al.
Publicado: (2023) -
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)