Cargando…

A quantum analytical Adam descent through parameter shift rule using Qibo

In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testi...

Descripción completa

Detalles Bibliográficos
Autores principales: Robbiati, Matteo, Efthymiou, Stavros, Pasquale, Andrea, Carrazza, Stefano
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.414.0206
http://cds.cern.ch/record/2847576
_version_ 1780976802875834368
author Robbiati, Matteo
Efthymiou, Stavros
Pasquale, Andrea
Carrazza, Stefano
author_facet Robbiati, Matteo
Efthymiou, Stavros
Pasquale, Andrea
Carrazza, Stefano
author_sort Robbiati, Matteo
collection CERN
description In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.
id cern-2847576
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28475762023-06-02T09:59:57Zdoi:10.22323/1.414.0206http://cds.cern.ch/record/2847576engRobbiati, MatteoEfthymiou, StavrosPasquale, AndreaCarrazza, StefanoA quantum analytical Adam descent through parameter shift rule using Qibohep-phParticle Physics - Phenomenologyquant-phGeneral Theoretical PhysicsIn this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.arXiv:2210.10787CERN-TH-2022-168TIF-UNIMI-2022-20oai:cds.cern.ch:28475762022-10-19
spellingShingle hep-ph
Particle Physics - Phenomenology
quant-ph
General Theoretical Physics
Robbiati, Matteo
Efthymiou, Stavros
Pasquale, Andrea
Carrazza, Stefano
A quantum analytical Adam descent through parameter shift rule using Qibo
title A quantum analytical Adam descent through parameter shift rule using Qibo
title_full A quantum analytical Adam descent through parameter shift rule using Qibo
title_fullStr A quantum analytical Adam descent through parameter shift rule using Qibo
title_full_unstemmed A quantum analytical Adam descent through parameter shift rule using Qibo
title_short A quantum analytical Adam descent through parameter shift rule using Qibo
title_sort quantum analytical adam descent through parameter shift rule using qibo
topic hep-ph
Particle Physics - Phenomenology
quant-ph
General Theoretical Physics
url https://dx.doi.org/10.22323/1.414.0206
http://cds.cern.ch/record/2847576
work_keys_str_mv AT robbiatimatteo aquantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT efthymioustavros aquantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT pasqualeandrea aquantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT carrazzastefano aquantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT robbiatimatteo quantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT efthymioustavros quantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT pasqualeandrea quantumanalyticaladamdescentthroughparametershiftruleusingqibo
AT carrazzastefano quantumanalyticaladamdescentthroughparametershiftruleusingqibo