Cargando…
A quantum analytical Adam descent through parameter shift rule using Qibo
In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testi...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.414.0206 http://cds.cern.ch/record/2847576 |
_version_ | 1780976802875834368 |
---|---|
author | Robbiati, Matteo Efthymiou, Stavros Pasquale, Andrea Carrazza, Stefano |
author_facet | Robbiati, Matteo Efthymiou, Stavros Pasquale, Andrea Carrazza, Stefano |
author_sort | Robbiati, Matteo |
collection | CERN |
description | In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization. |
id | cern-2847576 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28475762023-06-02T09:59:57Zdoi:10.22323/1.414.0206http://cds.cern.ch/record/2847576engRobbiati, MatteoEfthymiou, StavrosPasquale, AndreaCarrazza, StefanoA quantum analytical Adam descent through parameter shift rule using Qibohep-phParticle Physics - Phenomenologyquant-phGeneral Theoretical PhysicsIn this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.arXiv:2210.10787CERN-TH-2022-168TIF-UNIMI-2022-20oai:cds.cern.ch:28475762022-10-19 |
spellingShingle | hep-ph Particle Physics - Phenomenology quant-ph General Theoretical Physics Robbiati, Matteo Efthymiou, Stavros Pasquale, Andrea Carrazza, Stefano A quantum analytical Adam descent through parameter shift rule using Qibo |
title | A quantum analytical Adam descent through parameter shift rule using Qibo |
title_full | A quantum analytical Adam descent through parameter shift rule using Qibo |
title_fullStr | A quantum analytical Adam descent through parameter shift rule using Qibo |
title_full_unstemmed | A quantum analytical Adam descent through parameter shift rule using Qibo |
title_short | A quantum analytical Adam descent through parameter shift rule using Qibo |
title_sort | quantum analytical adam descent through parameter shift rule using qibo |
topic | hep-ph Particle Physics - Phenomenology quant-ph General Theoretical Physics |
url | https://dx.doi.org/10.22323/1.414.0206 http://cds.cern.ch/record/2847576 |
work_keys_str_mv | AT robbiatimatteo aquantumanalyticaladamdescentthroughparametershiftruleusingqibo AT efthymioustavros aquantumanalyticaladamdescentthroughparametershiftruleusingqibo AT pasqualeandrea aquantumanalyticaladamdescentthroughparametershiftruleusingqibo AT carrazzastefano aquantumanalyticaladamdescentthroughparametershiftruleusingqibo AT robbiatimatteo quantumanalyticaladamdescentthroughparametershiftruleusingqibo AT efthymioustavros quantumanalyticaladamdescentthroughparametershiftruleusingqibo AT pasqualeandrea quantumanalyticaladamdescentthroughparametershiftruleusingqibo AT carrazzastefano quantumanalyticaladamdescentthroughparametershiftruleusingqibo |