Cargando…
Monitoring Quality of ATLAS ITk Strip Sensors through Database
The high-Luminosity LHC upgrade necessitates a complete replacement of the ATLAS Inner Detector with a larger all-silicon tracker. The strip portion of it covers 165 m$^2$ area, afforded by the strip sensors. Following several prototype iterations and a successful pre-production, a full-scale produc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.420.0058 http://cds.cern.ch/record/2847934 |
_version_ | 1780976819418169344 |
---|---|
author | Fadeyev, Vitaliy Beranek, Marek Bach Marques, Eric Basso, Matthew Joseph Blue, Andrew James Federicova, Pavla Fernandez-Tejero, Xavi Fournier, Andrew Curtis Greig, Graham George Hamersly, Derek August Hara, Kazuhiko Hill, Ewan Chin Hirose, Shigeki Hommels, Bart Jones, Dominic Klein, Christoph Thomas Koffas, Thomas Latonova, Vera Mikestikova, Marcela Nakamura, Koji Poley, Anne-Luise Orr, Robert Rousso, David Stelzer, Bernd Sykora, Martin Ullan, Miguel Unno, Yoshinobu |
author_facet | Fadeyev, Vitaliy Beranek, Marek Bach Marques, Eric Basso, Matthew Joseph Blue, Andrew James Federicova, Pavla Fernandez-Tejero, Xavi Fournier, Andrew Curtis Greig, Graham George Hamersly, Derek August Hara, Kazuhiko Hill, Ewan Chin Hirose, Shigeki Hommels, Bart Jones, Dominic Klein, Christoph Thomas Koffas, Thomas Latonova, Vera Mikestikova, Marcela Nakamura, Koji Poley, Anne-Luise Orr, Robert Rousso, David Stelzer, Bernd Sykora, Martin Ullan, Miguel Unno, Yoshinobu |
author_sort | Fadeyev, Vitaliy |
collection | CERN |
description | The high-Luminosity LHC upgrade necessitates a complete replacement of the ATLAS Inner Detector with a larger all-silicon tracker. The strip portion of it covers 165 m$^2$ area, afforded by the strip sensors. Following several prototype iterations and a successful pre-production, a full-scale production started in 2021, to finish in 2025. It will include about 21,000 wafers and a factor of 5 higher throughput than pre-production, with about 500 sensors produced and tested per month. The transition to production stressed the need to evaluate the results from the Quality Control (QC) and Quality Assurance (QA) tests quickly to meet the monthly delivery schedule. The test data come from 15 collaborating institutes, therefore a highly distributed system with standardized interfaces was required. Specialized software layers of QA and QC Python code were developed against the backend of the ITk database (DB) for this purpose. The developments included particularities and special needs of the Strip Sensors community, such as the large variety of different test devices and test types, the necessary test formats, and different workflows at the test sites. Special attention was paid to techniques facilitating the development and user operations, for example creation of “parallel” sets of dummy DB objects for practice purposes, iterative verification of operability, and the automatic upload of test data. The scalability concerns and automation of the data handling were included in the system architecture from the very inception. The full suite of functionalities include data integrity checks, data processing to extract and evaluate key parameters, cross-test comparisons, and summary reporting for continuous monitoring. We will also describe the lessons learned and the necessary evolution of the system. |
id | cern-2847934 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28479342023-08-23T00:34:59Zdoi:10.22323/1.420.0058http://cds.cern.ch/record/2847934engFadeyev, VitaliyBeranek, MarekBach Marques, EricBasso, Matthew JosephBlue, Andrew JamesFedericova, PavlaFernandez-Tejero, XaviFournier, Andrew CurtisGreig, Graham GeorgeHamersly, Derek AugustHara, KazuhikoHill, Ewan ChinHirose, ShigekiHommels, BartJones, DominicKlein, Christoph ThomasKoffas, ThomasLatonova, VeraMikestikova, MarcelaNakamura, KojiPoley, Anne-LuiseOrr, RobertRousso, DavidStelzer, BerndSykora, MartinUllan, MiguelUnno, YoshinobuMonitoring Quality of ATLAS ITk Strip Sensors through DatabaseParticle Physics - ExperimentThe high-Luminosity LHC upgrade necessitates a complete replacement of the ATLAS Inner Detector with a larger all-silicon tracker. The strip portion of it covers 165 m$^2$ area, afforded by the strip sensors. Following several prototype iterations and a successful pre-production, a full-scale production started in 2021, to finish in 2025. It will include about 21,000 wafers and a factor of 5 higher throughput than pre-production, with about 500 sensors produced and tested per month. The transition to production stressed the need to evaluate the results from the Quality Control (QC) and Quality Assurance (QA) tests quickly to meet the monthly delivery schedule. The test data come from 15 collaborating institutes, therefore a highly distributed system with standardized interfaces was required. Specialized software layers of QA and QC Python code were developed against the backend of the ITk database (DB) for this purpose. The developments included particularities and special needs of the Strip Sensors community, such as the large variety of different test devices and test types, the necessary test formats, and different workflows at the test sites. Special attention was paid to techniques facilitating the development and user operations, for example creation of “parallel” sets of dummy DB objects for practice purposes, iterative verification of operability, and the automatic upload of test data. The scalability concerns and automation of the data handling were included in the system architecture from the very inception. The full suite of functionalities include data integrity checks, data processing to extract and evaluate key parameters, cross-test comparisons, and summary reporting for continuous monitoring. We will also describe the lessons learned and the necessary evolution of the system.ATL-ITK-PROC-2023-004oai:cds.cern.ch:28479342023-01-30 |
spellingShingle | Particle Physics - Experiment Fadeyev, Vitaliy Beranek, Marek Bach Marques, Eric Basso, Matthew Joseph Blue, Andrew James Federicova, Pavla Fernandez-Tejero, Xavi Fournier, Andrew Curtis Greig, Graham George Hamersly, Derek August Hara, Kazuhiko Hill, Ewan Chin Hirose, Shigeki Hommels, Bart Jones, Dominic Klein, Christoph Thomas Koffas, Thomas Latonova, Vera Mikestikova, Marcela Nakamura, Koji Poley, Anne-Luise Orr, Robert Rousso, David Stelzer, Bernd Sykora, Martin Ullan, Miguel Unno, Yoshinobu Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title | Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title_full | Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title_fullStr | Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title_full_unstemmed | Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title_short | Monitoring Quality of ATLAS ITk Strip Sensors through Database |
title_sort | monitoring quality of atlas itk strip sensors through database |
topic | Particle Physics - Experiment |
url | https://dx.doi.org/10.22323/1.420.0058 http://cds.cern.ch/record/2847934 |
work_keys_str_mv | AT fadeyevvitaliy monitoringqualityofatlasitkstripsensorsthroughdatabase AT beranekmarek monitoringqualityofatlasitkstripsensorsthroughdatabase AT bachmarqueseric monitoringqualityofatlasitkstripsensorsthroughdatabase AT bassomatthewjoseph monitoringqualityofatlasitkstripsensorsthroughdatabase AT blueandrewjames monitoringqualityofatlasitkstripsensorsthroughdatabase AT federicovapavla monitoringqualityofatlasitkstripsensorsthroughdatabase AT fernandeztejeroxavi monitoringqualityofatlasitkstripsensorsthroughdatabase AT fournierandrewcurtis monitoringqualityofatlasitkstripsensorsthroughdatabase AT greiggrahamgeorge monitoringqualityofatlasitkstripsensorsthroughdatabase AT hamerslyderekaugust monitoringqualityofatlasitkstripsensorsthroughdatabase AT harakazuhiko monitoringqualityofatlasitkstripsensorsthroughdatabase AT hillewanchin monitoringqualityofatlasitkstripsensorsthroughdatabase AT hiroseshigeki monitoringqualityofatlasitkstripsensorsthroughdatabase AT hommelsbart monitoringqualityofatlasitkstripsensorsthroughdatabase AT jonesdominic monitoringqualityofatlasitkstripsensorsthroughdatabase AT kleinchristophthomas monitoringqualityofatlasitkstripsensorsthroughdatabase AT koffasthomas monitoringqualityofatlasitkstripsensorsthroughdatabase AT latonovavera monitoringqualityofatlasitkstripsensorsthroughdatabase AT mikestikovamarcela monitoringqualityofatlasitkstripsensorsthroughdatabase AT nakamurakoji monitoringqualityofatlasitkstripsensorsthroughdatabase AT poleyanneluise monitoringqualityofatlasitkstripsensorsthroughdatabase AT orrrobert monitoringqualityofatlasitkstripsensorsthroughdatabase AT roussodavid monitoringqualityofatlasitkstripsensorsthroughdatabase AT stelzerbernd monitoringqualityofatlasitkstripsensorsthroughdatabase AT sykoramartin monitoringqualityofatlasitkstripsensorsthroughdatabase AT ullanmiguel monitoringqualityofatlasitkstripsensorsthroughdatabase AT unnoyoshinobu monitoringqualityofatlasitkstripsensorsthroughdatabase |