Cargando…
$k_{perp}$ factorization vs. renormalization group: a small-x consistency argument
The consistency of the BFKL equation with the renormalization group is investigated at next-to-leading log-x level.By use of Kt-factorization, it is found that,besides next-to-leading small-x resummation formulae, a leading, x-dependent redefinition of initial quarks and gluons is needed. Its interp...
Autor principal: | Ciafaloni, Marcello |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(95)00801-Q http://cds.cern.ch/record/284796 |
Ejemplares similares
-
Coordinate-space picture and $x \to 1$ singularities at fixed $k_\perp$
por: Hautmann, F.
Publicado: (2007) -
The k$_{\perp}$-algorithm for jet production and fragmentation
por: Catani, S
Publicado: (1993) -
The k$_{\perp}$-clustering algorithm for jets in deep inelastic scattering
por: Catani, S, et al.
Publicado: (1992) -
Longitudinally-invariant k$_{\perp}$-clustering algorithms for hadron-hadron collisions
por: Catani, S, et al.
Publicado: (1993) -
On factorisation at small x
por: Ciafaloni, Marcello, et al.
Publicado: (2000)