Cargando…
Deep learning techniques for energy clustering in the CMS electromagnetic calorimeter
The reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring crystals according to the expected topology of a...
Autor principal: | Marzocchi, Badder |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2848334 |
Ejemplares similares
-
Simulation of the CMS electromagnetic calorimeter response at the energy and intensity frontier
por: Marzocchi, Badder
Publicado: (2019) -
High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter
por: Marzocchi, Badder
Publicado: (2017) -
Prospects for a precision timing upgrade of the CMS PbWO$_{4}$ crystal electromagnetic calorimeter for the HL-LHC
por: Marzocchi, Badder
Publicado: (2017) -
Precision electromagnetic calorimetry at the energy frontier The CMS ECAL at the LHC Run 2
por: Marzocchi, Badder
Publicado: (2015) -
Energy Resolution Performance of the CMS Electromagnetic Calorimeter
por: Adzic, Petar, et al.
Publicado: (2006)