Cargando…
Quantum anomaly detection in the latent space of proton collision events at the LHC
We propose a new strategy for anomaly detection at the LHC based on unsupervised quantum machine learning algorithms. To accommodate the constraints on the problem size dictated by the limitations of current quantum hardware we develop a classical convolutional autoencoder. The designed quantum anom...
Autores principales: | Woźniak, Kinga Anna, Belis, Vasilis, Puljak, Ema, Barkoutsos, Panagiotis, Dissertori, Günther, Grossi, Michele, Pierini, Maurizio, Reiter, Florentin, Tavernelli, Ivano, Vallecorsa, Sofia |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2848669 |
Ejemplares similares
-
Unravelling physics beyond the standard model with classical and quantum anomaly detection
por: Schuhmacher, Julian, et al.
Publicado: (2023) -
Quantum machine learning in the latent space of high energy physics events
por: Anna Woźniak, Kinga, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Running the Dual-PQC GAN on noisy simulators and real quantum hardware
por: Chang, Su Yeon, et al.
Publicado: (2023) -
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023)