Cargando…
Quantum phase detection generalization from marginal quantum neural network models
Quantum machine learning offers a promising advantage in extracting information about quantum states, e.g., phase diagram. However, access to training labels is a major bottleneck for any supervised approach, preventing getting insights about new physics. In this Letter, using quantum convolutional...
Autores principales: | Monaco, Saverio, Kiss, Oriel, Mandarino, Antonio, Vallecorsa, Sofia, Grossi, Michele |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevB.107.L081105 http://cds.cern.ch/record/2848944 |
Ejemplares similares
-
Resource Saving via Ensemble Techniques for Quantum Neural Networks
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Importance sampling for stochastic quantum simulations
por: Kiss, Oriel, et al.
Publicado: (2022) -
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Finite-size criticality in fully connected spin models on superconducting quantum hardware
por: Grossi, Michele, et al.
Publicado: (2022) -
Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging
por: de Schoulepnikoff, Paulin, et al.
Publicado: (2023)