Cargando…
Robust Neural Particle Identification Models
The volume of data processed by the Large Hadron Collider experiments demands sophisticated selection rules typically based on machine learning algorithms. One of the shortcomings of these approaches is their profound sensitivity to the biases in training samples. In the case of particle identificat...
Autores principales: | Ryzhikov, Artem, Temirkhanov, Aziz, Derkach, Denis, Hushchyn, Mikhail, Kazeev, Nikita, Mokhnenko, Sergei |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012119 http://cds.cern.ch/record/2850401 |
Ejemplares similares
-
Detection of organic materials by spectrometric radiography method
por: Naydenov, S.V., et al.
Publicado: (2008) -
Particle Physics Instrumentation
por: Riegler, Werner
Publicado: (2014) -
Nuclear Track Detectors. Searches for Exotic Particles
por: Giacomelli, Giorgio, et al.
Publicado: (2008) -
Characterization of a Single Crystal Diamond Pixel Detector in a High Energy Particle Beam
por: Mathes, M., et al.
Publicado: (2008) -
Track-based alignment for the BESIII CGEM detector in the cosmic-ray test
por: Guo, A.Q., et al.
Publicado: (2022)