Cargando…
Effect of Strand Damage in Nb3Sn Rutherford Cables on the Quench Propagation in Accelerator Magnets
Accelerator magnets employing Nb$_3$Sn Rutherford cables are more susceptible to conductor degradation than Nb-Ti magnets. Recent measurements on a Nb$_3$Sn accelerator magnet have revealed unexpected behaviour such as decaying voltages at constant current plateaus of V-I measurements, inverse ramp...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/tasc.2023.3244140 http://cds.cern.ch/record/2851141 |
Sumario: | Accelerator magnets employing Nb$_3$Sn Rutherford cables are more susceptible to conductor degradation than Nb-Ti magnets. Recent measurements on a Nb$_3$Sn accelerator magnet have revealed unexpected behaviour such as decaying voltages at constant current plateaus of V-I measurements, inverse ramp rate and temperature dependence of quench currents, and anomalous quench propagation measured by so-called quench antennas. Numerical modelling has shown that these anomalies can be explained by an inhomogeneous degradation in the Rutherford cable, in which a subset of strands is fully or partially degraded. In this paper, we study how this type of degradation can affect the early stages of quench propagation. With the aid of a network model, we show how quench antenna signals can be used to diagnose inhomogeneous conductor degradation in the Rutherford cable. |
---|