Cargando…
Super-localisation of a point-like emitter in a resonant environment: Correction of the mirage effect
In this paper, we show that it is possible to overcome one of the fundamental limitations of super-resolution microscopy: the necessity to be in an optically homogeneous environment. Using recent modal approximation results from [10, 7], we show, as a proof of concept, that it is possible to recover...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3934/ipi.2022054 http://cds.cern.ch/record/2852828 |
Sumario: | In this paper, we show that it is possible to overcome one of the fundamental limitations of super-resolution microscopy: the necessity to be in an optically homogeneous environment. Using recent modal approximation results from [10, 7], we show, as a proof of concept, that it is possible to recover the position of a single point-like emitter in a known resonant environment from far-field measurements, with a precision two orders of magnitude below the classical Rayleigh limit. The procedure does not involve solving any partial differential equation, is computationally light (optimisation in with of the order of ) and is therefore suited for the recovery of a very large number of single emitters. |
---|