Cargando…

Hybrid modeling: towards the next level of scientific computing in engineering

AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurz, Stefan, De Gersem, Herbert, Galetzka, Armin, Klaedtke, Andreas, Liebsch, Melvin, Loukrezis, Dimitrios, Russenschuck, Stephan, Schmidt, Manuel
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1186/s13362-022-00123-0
http://cds.cern.ch/record/2852829
Descripción
Sumario:AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle-based models with data-based models into a joint architecture. This paper will give some background, explain trends and showcase recent achievements from an applied mathematics and industrial perspective. Examples include characterization of superconducting accelerator magnets by blending data with physics, data-driven magnetostatic field simulation without an explicit model of the constitutive law, and Bayesian free-shape optimization of a trace pair with bend on a printed circuit board.