Cargando…

Hybrid modeling: towards the next level of scientific computing in engineering

AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurz, Stefan, De Gersem, Herbert, Galetzka, Armin, Klaedtke, Andreas, Liebsch, Melvin, Loukrezis, Dimitrios, Russenschuck, Stephan, Schmidt, Manuel
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1186/s13362-022-00123-0
http://cds.cern.ch/record/2852829
_version_ 1780977170275893248
author Kurz, Stefan
De Gersem, Herbert
Galetzka, Armin
Klaedtke, Andreas
Liebsch, Melvin
Loukrezis, Dimitrios
Russenschuck, Stephan
Schmidt, Manuel
author_facet Kurz, Stefan
De Gersem, Herbert
Galetzka, Armin
Klaedtke, Andreas
Liebsch, Melvin
Loukrezis, Dimitrios
Russenschuck, Stephan
Schmidt, Manuel
author_sort Kurz, Stefan
collection CERN
description AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle-based models with data-based models into a joint architecture. This paper will give some background, explain trends and showcase recent achievements from an applied mathematics and industrial perspective. Examples include characterization of superconducting accelerator magnets by blending data with physics, data-driven magnetostatic field simulation without an explicit model of the constitutive law, and Bayesian free-shape optimization of a trace pair with bend on a printed circuit board.
id cern-2852829
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28528292023-03-18T19:34:45Zdoi:10.1186/s13362-022-00123-0http://cds.cern.ch/record/2852829engKurz, StefanDe Gersem, HerbertGaletzka, ArminKlaedtke, AndreasLiebsch, MelvinLoukrezis, DimitriosRussenschuck, StephanSchmidt, ManuelHybrid modeling: towards the next level of scientific computing in engineeringComputing and ComputersAbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle-based models with data-based models into a joint architecture. This paper will give some background, explain trends and showcase recent achievements from an applied mathematics and industrial perspective. Examples include characterization of superconducting accelerator magnets by blending data with physics, data-driven magnetostatic field simulation without an explicit model of the constitutive law, and Bayesian free-shape optimization of a trace pair with bend on a printed circuit board.oai:cds.cern.ch:28528292022
spellingShingle Computing and Computers
Kurz, Stefan
De Gersem, Herbert
Galetzka, Armin
Klaedtke, Andreas
Liebsch, Melvin
Loukrezis, Dimitrios
Russenschuck, Stephan
Schmidt, Manuel
Hybrid modeling: towards the next level of scientific computing in engineering
title Hybrid modeling: towards the next level of scientific computing in engineering
title_full Hybrid modeling: towards the next level of scientific computing in engineering
title_fullStr Hybrid modeling: towards the next level of scientific computing in engineering
title_full_unstemmed Hybrid modeling: towards the next level of scientific computing in engineering
title_short Hybrid modeling: towards the next level of scientific computing in engineering
title_sort hybrid modeling: towards the next level of scientific computing in engineering
topic Computing and Computers
url https://dx.doi.org/10.1186/s13362-022-00123-0
http://cds.cern.ch/record/2852829
work_keys_str_mv AT kurzstefan hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT degersemherbert hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT galetzkaarmin hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT klaedtkeandreas hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT liebschmelvin hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT loukrezisdimitrios hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT russenschuckstephan hybridmodelingtowardsthenextlevelofscientificcomputinginengineering
AT schmidtmanuel hybridmodelingtowardsthenextlevelofscientificcomputinginengineering