Cargando…
Hybrid modeling: towards the next level of scientific computing in engineering
AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle...
Autores principales: | Kurz, Stefan, De Gersem, Herbert, Galetzka, Armin, Klaedtke, Andreas, Liebsch, Melvin, Loukrezis, Dimitrios, Russenschuck, Stephan, Schmidt, Manuel |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1186/s13362-022-00123-0 http://cds.cern.ch/record/2852829 |
Ejemplares similares
-
Local field reconstruction from rotating coil measurements in particle accelerator magnets
por: Ion, Ion Gabriel, et al.
Publicado: (2021) -
BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering
por: Liebsch, Melvin, et al.
Publicado: (2022) -
Excel scientific and engineering cookbook
por: Bourg, David M
Publicado: (2006) -
Boundary-Element Methods for Field Reconstruction in Accelerator Magnets
por: Liebsch, Melvin, et al.
Publicado: (2020) -
Technical Java: developing scientific and engineering applications
por: Palmer, Grant
Publicado: (2003)