Cargando…
Denoising Convolutional Networks to Accelerate Detector Simulation
The high accuracy of detector simulation is crucial for modern particle physics experiments. However, this accuracy comes with a high computational cost, which will be exacerbated by the large datasets and complex detector upgrades associated with next-generation facilities such as the High Luminosi...
Autores principales: | Banerjee, Sunanda, Cruz Rodriguez, B, Franklin, Lena, Guerrero De La Cruz, H, Leininger, T, Norberg, S, Pedro, K, Rosado Trinidad, A, Ye, Y |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.2172/1854798 http://cds.cern.ch/record/2853279 |
Ejemplares similares
-
Denoising Convolutional Networks to Accelerate Detector Simulation
por: Banerjee, Sunanda, et al.
Publicado: (2022) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Detector Simulation Challenges for Future Accelerator Experiments
por: Apostolakis, John, et al.
Publicado: (2022) -
Acceleration of Magnetic Resonance Fingerprinting Reconstruction Using Denoising and Self-Attention Pyramidal Convolutional Neural Network
por: Hong, Jia-Sheng, et al.
Publicado: (2022) -
Method for Quantum Denoisers Using Convolutional Neural Network
por: Kim, Bong-Hyun, et al.
Publicado: (2022)