Cargando…

Universal Decomposition of Phase-Space Integrands

One-loop integrands can be written in terms of a simple, process-independent basis. We show that a similar basis exists for integrands of phase-space integrals for the real-emission contribution at next-to-leading order. Our demonstration deploys techniques from computational algebraic geometry to p...

Descripción completa

Detalles Bibliográficos
Autores principales: Kosower, David A., Page, Ben
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.107.096006
http://cds.cern.ch/record/2853383
_version_ 1780977205362294784
author Kosower, David A.
Page, Ben
author_facet Kosower, David A.
Page, Ben
author_sort Kosower, David A.
collection CERN
description One-loop integrands can be written in terms of a simple, process-independent basis. We show that a similar basis exists for integrands of phase-space integrals for the real-emission contribution at next-to-leading order. Our demonstration deploys techniques from computational algebraic geometry to partial-fraction integrands in a systematic way. This takes the first step toward a decomposition of phase-space integrals in terms of a basis of master integrals.
id cern-2853383
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28533832023-07-03T03:27:10Zdoi:10.1103/PhysRevD.107.096006http://cds.cern.ch/record/2853383engKosower, David A.Page, BenUniversal Decomposition of Phase-Space Integrandshep-thParticle Physics - Theoryhep-phParticle Physics - PhenomenologyOne-loop integrands can be written in terms of a simple, process-independent basis. We show that a similar basis exists for integrands of phase-space integrals for the real-emission contribution at next-to-leading order. Our demonstration deploys techniques from computational algebraic geometry to partial-fraction integrands in a systematic way. This takes the first step toward a decomposition of phase-space integrals in terms of a basis of master integrals.One-loop integrands can be written in terms of a simple, process-independent basis. We show that a similar basis exists for integrands of phase-space integrals for the real-emission contribution at next-to-leading order. Our demonstration deploys techniques from computational algebraic geometry to partial-fraction integrands in a systematic way. This takes the first step towards a decomposition of phase-space integrals in terms of a basis of master integrals.arXiv:2211.14156oai:cds.cern.ch:28533832022-11-25
spellingShingle hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
Kosower, David A.
Page, Ben
Universal Decomposition of Phase-Space Integrands
title Universal Decomposition of Phase-Space Integrands
title_full Universal Decomposition of Phase-Space Integrands
title_fullStr Universal Decomposition of Phase-Space Integrands
title_full_unstemmed Universal Decomposition of Phase-Space Integrands
title_short Universal Decomposition of Phase-Space Integrands
title_sort universal decomposition of phase-space integrands
topic hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.107.096006
http://cds.cern.ch/record/2853383
work_keys_str_mv AT kosowerdavida universaldecompositionofphasespaceintegrands
AT pageben universaldecompositionofphasespaceintegrands