Cargando…
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
We propose an accurate and efficient machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothes...
Autores principales: | Grosso, Gaia, Lai, Nicolò, Letizia, Marco, Pazzini, Jacopo, Rando, Marco, Rosasco, Lorenzo, Wulzer, Andrea, Zanetti, Marco |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/acebb7 http://cds.cern.ch/record/2854671 |
Ejemplares similares
-
Learning new physics efficiently with nonparametric methods
por: Letizia, Marco, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
A fast and flexible machine learning approach to data quality monitoring
por: Grosso, Gaia, et al.
Publicado: (2023) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022)