Cargando…
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
<!--HTML--><p><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Calibri, sans-serif;font-size:14.666667px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:nor...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2855573 |
_version_ | 1780977469394780160 |
---|---|
author | Wulff, Eric |
author_facet | Wulff, Eric |
author_sort | Wulff, Eric |
collection | CERN |
description | <!--HTML--><p><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Calibri, sans-serif;font-size:14.666667px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">In the past decade, Machine Learning (ML), and in particular Deep Learning (DL), has outperformed traditional rule-based algorithms on a wide variety of tasks, such as for instance image recognition, object detection and natural language processing. In CoE RAISE, we have additionally seen that ML can unlock new potential in fields such as high energy physics (HEP), remote sensing, seismic imaging, additive manufacturing, and acoustics. Training DL models, however, is no trivial task, especially if the model is large and have many tunable hyperparameters. To tackle this challenge, Hyperparameter Optimization (HPO) can be used to systematically explore the search space of possible hyperparameter configurations and, paired with the computing power of modern High Performance Computing (HPC) systems, it can drastically speed up the process of improving DL models. The aim of this talk is to give an introduction to HPO and the major challenges data scientists face when tuning their models, as well as to give some examples from a HEP use-case where large-scale HPO on HPC systems was successfully applied.</span></p><p><i>Eric Wulff is a fellow in the IT department at CERN and Task Leader for the use-case on LHC collision event reconstruction at the European Center of Excellence in Exascale Computing (CoE RAISE). His experience includes large-scale distributed training and hyperparameter optimization of DL algorithms on supercomputers and using quantum computing for ML/DL-based algorithms. Prior to joining CERN, Eric was a Machine Learning Engineer at Axis Communications, where he worked on object detection and video analytics using deep learning techniques.</i></p><p><strong>Coffee will be served at 10:30.</strong></p> |
id | cern-2855573 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28555732023-04-05T19:43:03Zhttp://cds.cern.ch/record/2855573engWulff, EricHyperparameter Optimization for Deep Learning Models Using High Performance ComputingHyperparameter Optimization for Deep Learning Models Using High Performance ComputingEP-IT Data Science Seminars<!--HTML--><p><span style="-webkit-text-size-adjust:auto;-webkit-text-stroke-width:0px;caret-color:rgb(0, 0, 0);display:inline !important;float:none;font-family:Calibri, sans-serif;font-size:14.666667px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:auto;text-align:start;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;widows:auto;word-spacing:0px;">In the past decade, Machine Learning (ML), and in particular Deep Learning (DL), has outperformed traditional rule-based algorithms on a wide variety of tasks, such as for instance image recognition, object detection and natural language processing. In CoE RAISE, we have additionally seen that ML can unlock new potential in fields such as high energy physics (HEP), remote sensing, seismic imaging, additive manufacturing, and acoustics. Training DL models, however, is no trivial task, especially if the model is large and have many tunable hyperparameters. To tackle this challenge, Hyperparameter Optimization (HPO) can be used to systematically explore the search space of possible hyperparameter configurations and, paired with the computing power of modern High Performance Computing (HPC) systems, it can drastically speed up the process of improving DL models. The aim of this talk is to give an introduction to HPO and the major challenges data scientists face when tuning their models, as well as to give some examples from a HEP use-case where large-scale HPO on HPC systems was successfully applied.</span></p><p><i>Eric Wulff is a fellow in the IT department at CERN and Task Leader for the use-case on LHC collision event reconstruction at the European Center of Excellence in Exascale Computing (CoE RAISE). His experience includes large-scale distributed training and hyperparameter optimization of DL algorithms on supercomputers and using quantum computing for ML/DL-based algorithms. Prior to joining CERN, Eric was a Machine Learning Engineer at Axis Communications, where he worked on object detection and video analytics using deep learning techniques.</i></p><p><strong>Coffee will be served at 10:30.</strong></p>oai:cds.cern.ch:28555732023 |
spellingShingle | EP-IT Data Science Seminars Wulff, Eric Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title | Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title_full | Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title_fullStr | Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title_full_unstemmed | Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title_short | Hyperparameter Optimization for Deep Learning Models Using High Performance Computing |
title_sort | hyperparameter optimization for deep learning models using high performance computing |
topic | EP-IT Data Science Seminars |
url | http://cds.cern.ch/record/2855573 |
work_keys_str_mv | AT wulfferic hyperparameteroptimizationfordeeplearningmodelsusinghighperformancecomputing |