Cargando…
Progress towards an improved particle flow algorithm at CMS with machine learning
The particle-flow (PF) algorithm, which infers particles based on tracks and calorimeter clusters, is of central importance to event reconstruction in the CMS experiment at the CERN LHC, and has been a focus of development in light of planned Phase-2 running conditions with an increased pileup and d...
Autores principales: | Mokhtar, Farouk, Pata, Joosep, Duarte, Javier, Wulff, Eric, Pierini, Maurizio, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2856311 |
Ejemplares similares
-
Explaining machine-learned particle-flow reconstruction
por: Mokhtar, Farouk, et al.
Publicado: (2021) -
Hyperparameter optimization of data-driven AI models on HPC systems
por: Wulff, Eric, et al.
Publicado: (2023) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021) -
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
por: Pata, Joosep, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)