Cargando…
Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
The LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevAccelBeams.26.093001 http://cds.cern.ch/record/2856414 |
_version_ | 1780977504913195008 |
---|---|
author | Potoine, J.B. Bruce, R. Cai, R. Cerutti, F. D'Andrea, M. Esposito, L. Hermes, P.D. Lechner, A. Mirarchi, D. Redaelli, S. Rodin, V. Pujo, F. Salvat Schoofs, P. Waets, A. Wrobel, F. |
author_facet | Potoine, J.B. Bruce, R. Cai, R. Cerutti, F. D'Andrea, M. Esposito, L. Hermes, P.D. Lechner, A. Mirarchi, D. Redaelli, S. Rodin, V. Pujo, F. Salvat Schoofs, P. Waets, A. Wrobel, F. |
author_sort | Potoine, J.B. |
collection | CERN |
description | The LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> beams will benefit from a significant increase of the beam intensity when entering its high-luminosity era in Run 3 (2023). The stored energy is expected to surpass 20 MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and fluka shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> run at <math display="inline"><mrow><mn>6.37</mn><mtext> </mtext><mtext> </mtext><mi>Z</mi><mi>TeV</mi></mrow></math>. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future <math display="inline"><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></math> runs. |
id | cern-2856414 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28564142023-09-06T02:31:36Zdoi:10.1103/PhysRevAccelBeams.26.093001http://cds.cern.ch/record/2856414engPotoine, J.B.Bruce, R.Cai, R.Cerutti, F.D'Andrea, M.Esposito, L.Hermes, P.D.Lechner, A.Mirarchi, D.Redaelli, S.Rodin, V.Pujo, F. SalvatSchoofs, P.Waets, A.Wrobel, F.Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Colliderphysics.acc-phAccelerators and Storage RingsThe LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> beams will benefit from a significant increase of the beam intensity when entering its high-luminosity era in Run 3 (2023). The stored energy is expected to surpass 20 MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and fluka shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> run at <math display="inline"><mrow><mn>6.37</mn><mtext> </mtext><mtext> </mtext><mi>Z</mi><mi>TeV</mi></mrow></math>. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future <math display="inline"><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></math> runs.The LHC heavy-ion program with $^{208}$Pb$^{82+}$ beams will benefit from a significant increase of the beam intensity when entering its High-Luminosity era in Run~3 (2023). The stored energy is expected to surpass 20~MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of $^{208}$Pb$^{82+}$ ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and \textsc{FLUKA} shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 $^{208}$Pb$^{82+}$ run at 6.37~$Z$TeV. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future $^{208}$Pb$^{82+}$ runs.arXiv:2304.03628oai:cds.cern.ch:28564142023-04-07 |
spellingShingle | physics.acc-ph Accelerators and Storage Rings Potoine, J.B. Bruce, R. Cai, R. Cerutti, F. D'Andrea, M. Esposito, L. Hermes, P.D. Lechner, A. Mirarchi, D. Redaelli, S. Rodin, V. Pujo, F. Salvat Schoofs, P. Waets, A. Wrobel, F. Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title | Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title_full | Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title_fullStr | Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title_full_unstemmed | Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title_short | Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider |
title_sort | power deposition studies for standard and crystal-assisted heavy ion collimation in the cern large hadron collider |
topic | physics.acc-ph Accelerators and Storage Rings |
url | https://dx.doi.org/10.1103/PhysRevAccelBeams.26.093001 http://cds.cern.ch/record/2856414 |
work_keys_str_mv | AT potoinejb powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT brucer powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT cair powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT ceruttif powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT dandream powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT espositol powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT hermespd powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT lechnera powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT mirarchid powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT redaellis powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT rodinv powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT pujofsalvat powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT schoofsp powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT waetsa powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider AT wrobelf powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider |