Cargando…

Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider

The LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow...

Descripción completa

Detalles Bibliográficos
Autores principales: Potoine, J.B., Bruce, R., Cai, R., Cerutti, F., D'Andrea, M., Esposito, L., Hermes, P.D., Lechner, A., Mirarchi, D., Redaelli, S., Rodin, V., Pujo, F. Salvat, Schoofs, P., Waets, A., Wrobel, F.
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.26.093001
http://cds.cern.ch/record/2856414
_version_ 1780977504913195008
author Potoine, J.B.
Bruce, R.
Cai, R.
Cerutti, F.
D'Andrea, M.
Esposito, L.
Hermes, P.D.
Lechner, A.
Mirarchi, D.
Redaelli, S.
Rodin, V.
Pujo, F. Salvat
Schoofs, P.
Waets, A.
Wrobel, F.
author_facet Potoine, J.B.
Bruce, R.
Cai, R.
Cerutti, F.
D'Andrea, M.
Esposito, L.
Hermes, P.D.
Lechner, A.
Mirarchi, D.
Redaelli, S.
Rodin, V.
Pujo, F. Salvat
Schoofs, P.
Waets, A.
Wrobel, F.
author_sort Potoine, J.B.
collection CERN
description The LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> beams will benefit from a significant increase of the beam intensity when entering its high-luminosity era in Run 3 (2023). The stored energy is expected to surpass 20 MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and fluka shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> run at <math display="inline"><mrow><mn>6.37</mn><mtext> </mtext><mtext> </mtext><mi>Z</mi><mi>TeV</mi></mrow></math>. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future <math display="inline"><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></math> runs.
id cern-2856414
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2023
record_format invenio
spelling cern-28564142023-09-06T02:31:36Zdoi:10.1103/PhysRevAccelBeams.26.093001http://cds.cern.ch/record/2856414engPotoine, J.B.Bruce, R.Cai, R.Cerutti, F.D'Andrea, M.Esposito, L.Hermes, P.D.Lechner, A.Mirarchi, D.Redaelli, S.Rodin, V.Pujo, F. SalvatSchoofs, P.Waets, A.Wrobel, F.Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Colliderphysics.acc-phAccelerators and Storage RingsThe LHC heavy-ion program with <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> beams will benefit from a significant increase of the beam intensity when entering its high-luminosity era in Run 3 (2023). The stored energy is expected to surpass 20 MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and fluka shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 <math display="inline"><mrow><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></mrow></math> run at <math display="inline"><mrow><mn>6.37</mn><mtext> </mtext><mtext> </mtext><mi>Z</mi><mi>TeV</mi></mrow></math>. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future <math display="inline"><msup><mrow><mmultiscripts><mrow><mi>Pb</mi></mrow><mprescripts/><none/><mrow><mn>208</mn></mrow></mmultiscripts></mrow><mrow><mn>82</mn><mo>+</mo></mrow></msup></math> runs.The LHC heavy-ion program with $^{208}$Pb$^{82+}$ beams will benefit from a significant increase of the beam intensity when entering its High-Luminosity era in Run~3 (2023). The stored energy is expected to surpass 20~MJ per beam. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, nuclear fragmentation and electromagnetic dissociation of $^{208}$Pb$^{82+}$ ions in collimators generates a flux of secondary fragments, which are lost in downstream dispersion suppressor and arc cells. These secondary ions may pose a performance limitation in upcoming runs since they can induce magnet quenches. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in forthcoming heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of tracking and \textsc{FLUKA} shower simulations, comparing the standard collimation system against the crystal-based one. In order to quantify the predictive ability of the simulation model, we present absolute benchmarks against beam loss monitor measurements from the 2018 $^{208}$Pb$^{82+}$ run at 6.37~$Z$TeV. The benchmarks cover several hundred meters of beamline, from the primary collimators to the first arc cells. Based on these studies, we provide a detailed analysis of ion fragmentation and leakage to the cold magnets and quantify the expected quench margin in future $^{208}$Pb$^{82+}$ runs.arXiv:2304.03628oai:cds.cern.ch:28564142023-04-07
spellingShingle physics.acc-ph
Accelerators and Storage Rings
Potoine, J.B.
Bruce, R.
Cai, R.
Cerutti, F.
D'Andrea, M.
Esposito, L.
Hermes, P.D.
Lechner, A.
Mirarchi, D.
Redaelli, S.
Rodin, V.
Pujo, F. Salvat
Schoofs, P.
Waets, A.
Wrobel, F.
Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title_full Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title_fullStr Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title_full_unstemmed Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title_short Power deposition studies for standard and crystal-assisted heavy ion collimation in the CERN Large Hadron Collider
title_sort power deposition studies for standard and crystal-assisted heavy ion collimation in the cern large hadron collider
topic physics.acc-ph
Accelerators and Storage Rings
url https://dx.doi.org/10.1103/PhysRevAccelBeams.26.093001
http://cds.cern.ch/record/2856414
work_keys_str_mv AT potoinejb powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT brucer powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT cair powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT ceruttif powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT dandream powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT espositol powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT hermespd powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT lechnera powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT mirarchid powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT redaellis powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT rodinv powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT pujofsalvat powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT schoofsp powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT waetsa powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider
AT wrobelf powerdepositionstudiesforstandardandcrystalassistedheavyioncollimationinthecernlargehadroncollider