Cargando…
A fast and flexible machine learning approach to data quality monitoring
We present a machine learning based approach for real-time monitoring of particle detectors. The proposed strategy evaluates the compatibility between incoming batches of experimental data and a reference sample representing the data behavior in normal conditions by implementing a likelihood-ratio h...
Autores principales: | Grosso, Gaia, Lai, Nicolò, Letizia, Marco, Pazzini, Jacopo, Rando, Marco, Wulzer, Andrea, Zanetti, Marco |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2856519 |
Ejemplares similares
-
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
por: Grosso, Gaia, et al.
Publicado: (2023) -
Learning new physics efficiently with nonparametric methods
por: Letizia, Marco, et al.
Publicado: (2022) -
Learning Multivariate New Physics
por: D'Agnolo, Raffaele Tito, et al.
Publicado: (2019) -
Learning New Physics from an Imperfect Machine
por: d'Agnolo, Raffaele Tito, et al.
Publicado: (2021) -
Learning new physics efficiently with nonparametric methods
por: Letizia, Marco, et al.
Publicado: (2022)