Cargando…
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
More than a thousand 8″ silicon sensors will be visually inspected to look for anomalies on their surface during the quality control preceding assembly into the High-Granularity Calorimeter for the CMS experiment at CERN. A deep learning-based algorithm that pre-selects potentially anomalous images...
Autores principales: | Grönroos, Sonja, Pierini, Maurizio, Chernyavskaya, Nadezda |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/aced7e http://cds.cern.ch/record/2856526 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022)