Cargando…
Machine Learning based tool for CMS RPC currents quality monitoring
The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to <math display=&...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2023.168449 http://cds.cern.ch/record/2856533 |
_version_ | 1780977517054656512 |
---|---|
author | Shumka, E. Samalan, A. Tytgat, M. Sawy, M. El Alves, G.A. Marujo, F. Coelho, E.A. Da Costa, E.M. Nogima, H. Santoro, A. De Souza, S. Fonseca De Jesus Damiao, D. Thiel, M. Mota Amarilo, K. Filho, M. Barroso Ferreira Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Shopova, M. Soultanov, G. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Petrov, A. Qian, S.J. Kou, H. Liu, Z.-A. Zhao, J. Song, J. Hou, Q. Diao, W. Cao, P. Avila, C. Barbosa, D. Cabrera, A. Florez, A. Fraga, J. Reyes, J. Assran, Y. Mahmoud, M.A. Mohammed, Y. Crotty, I. Laktineh, I. Grenier, G. Gouzevitch, M. Mirabito, L. Shchablo, K. Bagaturia, I. Lomidze, I. Tsamalaidze, Z. Amoozegar, V. Boghrati, B. Ebraimi, M. Mohammadi Najafabadi, M. Zareian, E. Abbrescia, M. Iaselli, G. Pugliese, G. Loddo, F. De Filippis, N. Aly, R. Ramos, D. Elmetenawee, W. Leszki, S. Margjeka, I. Paesani, D. Benussi, L. Bianco, S. Piccolo, D. Meola, S. Buontempo, S. Carnevali, F. Lista, L. Paolucci, P. Fienga, F. Braghieri, A. Salvini, P. Montagna, P. Riccardi, C. Vitulo, P. Asilar, E. Choi, J. Kim, T.J. Choi, S.Y. Hong, B. Lee, K.S. Oh, H.Y. Goh, J. Yu, I. Estrada, C. Uribe Pedraza, I. Castilla-Valdez, H. Sanchez-Hernandez, A. Fernandez, R.L. Ramirez-Garcia, M. Vazquez, E. Shah, M.A. Zaganidis, N. Radi, A. Hoorani, H. Muhammad, S. Ahmad, A. Asghar, I. Khan, W.A. Eysermans, J. Da Silva De Araujo, F. Torres |
author_facet | Shumka, E. Samalan, A. Tytgat, M. Sawy, M. El Alves, G.A. Marujo, F. Coelho, E.A. Da Costa, E.M. Nogima, H. Santoro, A. De Souza, S. Fonseca De Jesus Damiao, D. Thiel, M. Mota Amarilo, K. Filho, M. Barroso Ferreira Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Shopova, M. Soultanov, G. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Petrov, A. Qian, S.J. Kou, H. Liu, Z.-A. Zhao, J. Song, J. Hou, Q. Diao, W. Cao, P. Avila, C. Barbosa, D. Cabrera, A. Florez, A. Fraga, J. Reyes, J. Assran, Y. Mahmoud, M.A. Mohammed, Y. Crotty, I. Laktineh, I. Grenier, G. Gouzevitch, M. Mirabito, L. Shchablo, K. Bagaturia, I. Lomidze, I. Tsamalaidze, Z. Amoozegar, V. Boghrati, B. Ebraimi, M. Mohammadi Najafabadi, M. Zareian, E. Abbrescia, M. Iaselli, G. Pugliese, G. Loddo, F. De Filippis, N. Aly, R. Ramos, D. Elmetenawee, W. Leszki, S. Margjeka, I. Paesani, D. Benussi, L. Bianco, S. Piccolo, D. Meola, S. Buontempo, S. Carnevali, F. Lista, L. Paolucci, P. Fienga, F. Braghieri, A. Salvini, P. Montagna, P. Riccardi, C. Vitulo, P. Asilar, E. Choi, J. Kim, T.J. Choi, S.Y. Hong, B. Lee, K.S. Oh, H.Y. Goh, J. Yu, I. Estrada, C. Uribe Pedraza, I. Castilla-Valdez, H. Sanchez-Hernandez, A. Fernandez, R.L. Ramirez-Garcia, M. Vazquez, E. Shah, M.A. Zaganidis, N. Radi, A. Hoorani, H. Muhammad, S. Ahmad, A. Asghar, I. Khan, W.A. Eysermans, J. Da Silva De Araujo, F. Torres |
author_sort | Shumka, E. |
collection | CERN |
description | The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to <math display="inline" id="d1e1856" altimg="si1.svg"><mrow><mn>2</mn><mo linebreak="goodbreak" linebreakstyle="after">×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>34</mn></mrow></msup></mrow></math><math display="inline" id="d1e1873" altimg="si2.svg"><mrow><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mtext>s</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future. |
id | cern-2856533 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28565332023-07-21T03:24:25Zdoi:10.1016/j.nima.2023.168449http://cds.cern.ch/record/2856533engShumka, E.Samalan, A.Tytgat, M.Sawy, M. ElAlves, G.A.Marujo, F.Coelho, E.A.Da Costa, E.M.Nogima, H.Santoro, A.De Souza, S. FonsecaDe Jesus Damiao, D.Thiel, M.Mota Amarilo, K.Filho, M. Barroso FerreiraAleksandrov, A.Hadjiiska, R.Iaydjiev, P.Rodozov, M.Shopova, M.Soultanov, G.Dimitrov, A.Litov, L.Pavlov, B.Petkov, P.Petrov, A.Qian, S.J.Kou, H.Liu, Z.-A.Zhao, J.Song, J.Hou, Q.Diao, W.Cao, P.Avila, C.Barbosa, D.Cabrera, A.Florez, A.Fraga, J.Reyes, J.Assran, Y.Mahmoud, M.A.Mohammed, Y.Crotty, I.Laktineh, I.Grenier, G.Gouzevitch, M.Mirabito, L.Shchablo, K.Bagaturia, I.Lomidze, I.Tsamalaidze, Z.Amoozegar, V.Boghrati, B.Ebraimi, M.Mohammadi Najafabadi, M.Zareian, E.Abbrescia, M.Iaselli, G.Pugliese, G.Loddo, F.De Filippis, N.Aly, R.Ramos, D.Elmetenawee, W.Leszki, S.Margjeka, I.Paesani, D.Benussi, L.Bianco, S.Piccolo, D.Meola, S.Buontempo, S.Carnevali, F.Lista, L.Paolucci, P.Fienga, F.Braghieri, A.Salvini, P.Montagna, P.Riccardi, C.Vitulo, P.Asilar, E.Choi, J.Kim, T.J.Choi, S.Y.Hong, B.Lee, K.S.Oh, H.Y.Goh, J.Yu, I.Estrada, C. UribePedraza, I.Castilla-Valdez, H.Sanchez-Hernandez, A.Fernandez, R.L.Ramirez-Garcia, M.Vazquez, E.Shah, M.A.Zaganidis, N.Radi, A.Hoorani, H.Muhammad, S.Ahmad, A.Asghar, I.Khan, W.A.Eysermans, J.Da Silva De Araujo, F. TorresMachine Learning based tool for CMS RPC currents quality monitoringhep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesThe muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to <math display="inline" id="d1e1856" altimg="si1.svg"><mrow><mn>2</mn><mo linebreak="goodbreak" linebreakstyle="after">×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>34</mn></mrow></msup></mrow></math><math display="inline" id="d1e1873" altimg="si2.svg"><mrow><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mtext>s</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future.The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to $2\times 10^{34}$$\text{cm}^{-2}\text{s}^{-1}$ are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future.arXiv:2302.02764oai:cds.cern.ch:28565332023-02-06 |
spellingShingle | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques Shumka, E. Samalan, A. Tytgat, M. Sawy, M. El Alves, G.A. Marujo, F. Coelho, E.A. Da Costa, E.M. Nogima, H. Santoro, A. De Souza, S. Fonseca De Jesus Damiao, D. Thiel, M. Mota Amarilo, K. Filho, M. Barroso Ferreira Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Shopova, M. Soultanov, G. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Petrov, A. Qian, S.J. Kou, H. Liu, Z.-A. Zhao, J. Song, J. Hou, Q. Diao, W. Cao, P. Avila, C. Barbosa, D. Cabrera, A. Florez, A. Fraga, J. Reyes, J. Assran, Y. Mahmoud, M.A. Mohammed, Y. Crotty, I. Laktineh, I. Grenier, G. Gouzevitch, M. Mirabito, L. Shchablo, K. Bagaturia, I. Lomidze, I. Tsamalaidze, Z. Amoozegar, V. Boghrati, B. Ebraimi, M. Mohammadi Najafabadi, M. Zareian, E. Abbrescia, M. Iaselli, G. Pugliese, G. Loddo, F. De Filippis, N. Aly, R. Ramos, D. Elmetenawee, W. Leszki, S. Margjeka, I. Paesani, D. Benussi, L. Bianco, S. Piccolo, D. Meola, S. Buontempo, S. Carnevali, F. Lista, L. Paolucci, P. Fienga, F. Braghieri, A. Salvini, P. Montagna, P. Riccardi, C. Vitulo, P. Asilar, E. Choi, J. Kim, T.J. Choi, S.Y. Hong, B. Lee, K.S. Oh, H.Y. Goh, J. Yu, I. Estrada, C. Uribe Pedraza, I. Castilla-Valdez, H. Sanchez-Hernandez, A. Fernandez, R.L. Ramirez-Garcia, M. Vazquez, E. Shah, M.A. Zaganidis, N. Radi, A. Hoorani, H. Muhammad, S. Ahmad, A. Asghar, I. Khan, W.A. Eysermans, J. Da Silva De Araujo, F. Torres Machine Learning based tool for CMS RPC currents quality monitoring |
title | Machine Learning based tool for CMS RPC currents quality monitoring |
title_full | Machine Learning based tool for CMS RPC currents quality monitoring |
title_fullStr | Machine Learning based tool for CMS RPC currents quality monitoring |
title_full_unstemmed | Machine Learning based tool for CMS RPC currents quality monitoring |
title_short | Machine Learning based tool for CMS RPC currents quality monitoring |
title_sort | machine learning based tool for cms rpc currents quality monitoring |
topic | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nima.2023.168449 http://cds.cern.ch/record/2856533 |
work_keys_str_mv | AT shumkae machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT samalana machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT tytgatm machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT sawymel machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT alvesga machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT marujof machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT coelhoea machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT dacostaem machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT nogimah machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT santoroa machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT desouzasfonseca machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT dejesusdamiaod machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT thielm machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT motaamarilok machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT filhombarrosoferreira machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT aleksandrova machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT hadjiiskar machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT iaydjievp machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT rodozovm machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT shopovam machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT soultanovg machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT dimitrova machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT litovl machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT pavlovb machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT petkovp machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT petrova machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT qiansj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT kouh machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT liuza machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT zhaoj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT songj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT houq machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT diaow machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT caop machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT avilac machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT barbosad machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT cabreraa machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT floreza machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT fragaj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT reyesj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT assrany machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT mahmoudma machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT mohammedy machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT crottyi machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT laktinehi machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT grenierg machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT gouzevitchm machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT mirabitol machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT shchablok machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT bagaturiai machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT lomidzei machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT tsamalaidzez machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT amoozegarv machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT boghratib machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT ebraimim machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT mohammadinajafabadim machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT zareiane machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT abbresciam machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT iasellig machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT puglieseg machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT loddof machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT defilippisn machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT alyr machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT ramosd machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT elmetenaweew machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT leszkis machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT margjekai machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT paesanid machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT benussil machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT biancos machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT piccolod machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT meolas machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT buontempos machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT carnevalif machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT listal machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT paoluccip machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT fiengaf machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT braghieria machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT salvinip machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT montagnap machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT riccardic machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT vitulop machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT asilare machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT choij machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT kimtj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT choisy machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT hongb machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT leeks machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT ohhy machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT gohj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT yui machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT estradacuribe machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT pedrazai machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT castillavaldezh machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT sanchezhernandeza machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT fernandezrl machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT ramirezgarciam machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT vazqueze machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT shahma machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT zaganidisn machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT radia machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT hooranih machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT muhammads machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT ahmada machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT asghari machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT khanwa machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT eysermansj machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring AT dasilvadearaujoftorres machinelearningbasedtoolforcmsrpccurrentsqualitymonitoring |