Cargando…
Utilizing Distributed Heterogeneous Computing with PanDA in ATLAS
In recent years, advanced and complex analysis workflows have gained increasing importance in the ATLAS experiment at CERN, one of the large scientific experiments at the Large Hadron Collider (LHC). Support for such workflows has allowed users to exploit remote computing resources and service provi...
Autores principales: | Maeno, Tadashi, Alekseev, Aleksandr, Barreiro Megino, Fernando Harald, De, Kaushik, Guan, Wen, Karavakis, Edward, Klimentov, Alexei, Korchuganova, Tatiana, Lin, Fa-Hui, Nilsson, Paul, Wenaus, Torre, Yang, Zhaoyu, Zhao, Xin |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2857819 |
Ejemplares similares
-
Utilizing Distributed Heterogeneous Computing with PanDA in ATLAS
por: Maeno, Tadashi, et al.
Publicado: (2023) -
Distributed Machine Learning Workflow with PanDA and iDDS in LHC ATLAS
por: Guan, Wen, et al.
Publicado: (2023) -
Distributed Machine Learning with PanDA and iDDS in LHC ATLAS
por: Guan, Wen, et al.
Publicado: (2023) -
Applying Big Data solutions for log analytics in the PanDA infrastructure
por: Alekseev, Aleksandr, et al.
Publicado: (2017) -
PanDA for ATLAS distributed computing in the next decade
por: Barreiro Megino, Fernando Harald, et al.
Publicado: (2017)