Cargando…
Optimizing electron and photon reconstruction using deep learning application to the CMS electromagnetic calorimeter
The reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring crystals according to the expected topology of a...
Autor principal: | Valsecchi, Davide |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2858893 |
Ejemplares similares
-
Electron Reconstruction in the CMS Electromagnetic Calorimeter
por: Meschi, Emilio, et al.
Publicado: (2001) -
Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS
por: Banfi, Danilo
Publicado: (2007) -
First evidence of VBS in semileptonic decays with $WVjj$ $\rightarrow$ $lvqqjj$ final state and optimization of the CMS electromagnetic calorimeter for Run III
por: Valsecchi, Davide
Publicado: (2022) -
Electronic calibration of the electromagnetic calorimeter of CMS
por: Böhner, G
Publicado: (1997) -
Deep learning techniques for energy clustering in the CMS electromagnetic calorimeter
por: Marzocchi, Badder
Publicado: (2022)