Cargando…
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
Training and Hyperparameter Optimization (HPO) of deep learning-based AI models are often compute resource intensive and calls for the use of large-scale distributed resources as well as scalable and resource efficient hyperparameter search algorithms. This work studies the potential of using model...
Autores principales: | Wulff, Eric, Girone, Maria, Southwick, David, Amboage, Juan Pablo García, Cuba, Eduard |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2859790 |
Ejemplares similares
-
Hyperparameter optimization of data-driven AI models on HPC systems
por: Wulff, Eric, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020)