Cargando…
Construction and Test of the Enhanced Racetrack Model Coil, First CERN R&D; Magnet for the FCC
Racetrack model coils (RMC) have been built at CERN during the past decade, as an R&D; tool to qualify conductors and technologies developed for high field superconducting accelerator magnets (Perez et al. , 2016). RMC, assembled in a dipole magnet configuration, proved to be an efficient instr...
Autores principales: | , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TASC.2022.3163064 http://cds.cern.ch/record/2859809 |
Sumario: | Racetrack model coils (RMC) have been built at CERN during the past decade, as an R&D; tool to qualify conductors and technologies developed for high field superconducting accelerator magnets (Perez
et al.
, 2016). RMC, assembled in a dipole magnet configuration, proved to be an efficient instrument reducing cost and feed-back time while developing new magnets. In a similar way, as for the High-Luminosity Large Hadron Collider (HL-LHC) project, CERN has designed the enhanced RMC (eRMC) made of two flat coils using 40 (1 mm diameter) Nb
3
Sn strand cable produced with Rod Restack Process (RRP) technology. This conductor geometry, originally designed and produced to build the block coil dipole magnet FRESCA2 (Rochepault
et al.
, 2019), was chosen to reduce the production time and shorten the road towards the feasibility demonstration to reach 16–18 T magnetic fields in a dipolar configuration. Like previous model coils built at CERN (Short model coils (SMC) & RMC), eRMC1a has been built using the “bladders and keys” type mechanical structure. This paper describes the main construction steps and the powering test results. At 1.9 K the magnet produced 16.5 T peak field in the conductor, the highest ever for a dipole magnet of this configuration. |
---|