Cargando…
Deep Learning Approaches for LHCb ECAL Reconstruction
The aim of the LHCb Upgrade II at the LHC is to operate at a luminosity of 1.5 x 1034 cm-2 s-1 to collect a data set of 300 fb-1. This will require a substantial modification of the current LHCb ECAL due to high radiation doses in the central region and increased particle densities. Advanced detecto...
Autor principal: | Ratnikov, Fedor |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Acceso en línea: | http://cds.cern.ch/record/2860017 |
Ejemplares similares
-
Machine Learning approach to $\gamma/\pi^0$ separation in the LHCb calorimeter
por: Chekalina, Viktoria, et al.
Publicado: (2018) -
LHCb ECAL upgrade II
por: Kholodenko, Sergey
Publicado: (2021) -
LHCb ECAL upgrade II
por: Kholodenko, Sergei
Publicado: (2022) -
Machine Learning approach to boosting neutral particles identification in the LHCb calorimeter
por: Boldyrev, Alexey, et al.
Publicado: (2019) -
Deep Learning approach to Cellular Automaton CALO reconstruction in LHCb
por: Valls Canudas, Nuria
Publicado: (2021)