Cargando…
Using a Neural Network to Approximate the Negative Log Likelihood Function
An increasingly frequent challenge faced in HEP data analysis is to characterize the agreement between a prediction that depends on a dozen or more model parameters-such as predictions coming from an effective field theory (EFT) framework-and the observed data. Traditionally, such characterizations...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2860206 |
Ejemplares similares
-
Fourier analysis or Log-likelihood fit for time dependent mixing
por: Moser, H G
Publicado: (1993) -
Simplified likelihood for the re-interpretation of public CMS results
por: The CMS Collaboration
Publicado: (2017) -
High Granularity Calorimeter Reconstruction Results using a Graph Neural Network
por: CMS Collaboration
Publicado: (2022) -
Boosted jet identification using particle candidates and deep neural networks
por: CMS Collaboration
Publicado: (2017) -
Efficiency parametrization of b-tagging classifier using Graph Neural Networks
por: CMS Collaboration
Publicado: (2022)