Cargando…
Improving ATLAS hadronic object performance with ML/AI Algorithms
Hadronic object reconstruction is one of the most promising settings for cutting-edge machine learning and artificial intelligence algorithms at the LHC. In this contribution, selected highlights of ML/AI applications by ATLAS to particle and boosted-object identification, MET reconstruction and oth...
Autor principal: | Chen, Xiang |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2860218 |
Ejemplares similares
-
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms
por: Hodkinson, Benjamin Haslum
Publicado: (2023) -
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms
por: Fitschen, Tobias
Publicado: (2023) -
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms
por: Kong, Albert
Publicado: (2023) -
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms
por: Cirotto, Francesco
Publicado: (2023) -
Improving ATLAS Hadronic Object Performance with ML/AI Algorithms
por: Hodkinson, Benjamin Haslum
Publicado: (2023)