Cargando…

Composing arbitrarily many $SU(N)$ fundamentals

We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><...

Descripción completa

Detalles Bibliográficos
Autores principales: Polychronakos, Alexios P., Sfetsos, Konstantinos
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nuclphysb.2023.116314
http://cds.cern.ch/record/2860642
Descripción
Sumario:We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.