Cargando…
Composing arbitrarily many $SU(N)$ fundamentals
We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysb.2023.116314 http://cds.cern.ch/record/2860642 |
Sumario: | We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits. |
---|