Cargando…

Composing arbitrarily many $SU(N)$ fundamentals

We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><...

Descripción completa

Detalles Bibliográficos
Autores principales: Polychronakos, Alexios P., Sfetsos, Konstantinos
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nuclphysb.2023.116314
http://cds.cern.ch/record/2860642
_version_ 1780977757660905472
author Polychronakos, Alexios P.
Sfetsos, Konstantinos
author_facet Polychronakos, Alexios P.
Sfetsos, Konstantinos
author_sort Polychronakos, Alexios P.
collection CERN
description We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.
id cern-2860642
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2023
record_format invenio
spelling cern-28606422023-09-14T05:52:49Zdoi:10.1016/j.nuclphysb.2023.116314http://cds.cern.ch/record/2860642engPolychronakos, Alexios P.Sfetsos, KonstantinosComposing arbitrarily many $SU(N)$ fundamentalsmath.MPMathematical Physics and Mathematicsmath-phMathematical Physics and Mathematicscond-mat.stat-mechhep-thParticle Physics - TheoryWe compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number $n$ of fundamental representations of $SU(N)$, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of $SU(N)$ to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-$n$ limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.arXiv:2305.19345CERN-TH-2023-085oai:cds.cern.ch:28606422023-05-30
spellingShingle math.MP
Mathematical Physics and Mathematics
math-ph
Mathematical Physics and Mathematics
cond-mat.stat-mech
hep-th
Particle Physics - Theory
Polychronakos, Alexios P.
Sfetsos, Konstantinos
Composing arbitrarily many $SU(N)$ fundamentals
title Composing arbitrarily many $SU(N)$ fundamentals
title_full Composing arbitrarily many $SU(N)$ fundamentals
title_fullStr Composing arbitrarily many $SU(N)$ fundamentals
title_full_unstemmed Composing arbitrarily many $SU(N)$ fundamentals
title_short Composing arbitrarily many $SU(N)$ fundamentals
title_sort composing arbitrarily many $su(n)$ fundamentals
topic math.MP
Mathematical Physics and Mathematics
math-ph
Mathematical Physics and Mathematics
cond-mat.stat-mech
hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1016/j.nuclphysb.2023.116314
http://cds.cern.ch/record/2860642
work_keys_str_mv AT polychronakosalexiosp composingarbitrarilymanysunfundamentals
AT sfetsoskonstantinos composingarbitrarilymanysunfundamentals