Cargando…
Composing arbitrarily many $SU(N)$ fundamentals
We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysb.2023.116314 http://cds.cern.ch/record/2860642 |
_version_ | 1780977757660905472 |
---|---|
author | Polychronakos, Alexios P. Sfetsos, Konstantinos |
author_facet | Polychronakos, Alexios P. Sfetsos, Konstantinos |
author_sort | Polychronakos, Alexios P. |
collection | CERN |
description | We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits. |
id | cern-2860642 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28606422023-09-14T05:52:49Zdoi:10.1016/j.nuclphysb.2023.116314http://cds.cern.ch/record/2860642engPolychronakos, Alexios P.Sfetsos, KonstantinosComposing arbitrarily many $SU(N)$ fundamentalsmath.MPMathematical Physics and Mathematicsmath-phMathematical Physics and Mathematicscond-mat.stat-mechhep-thParticle Physics - TheoryWe compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of <math altimg="si1.svg"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math> to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number $n$ of fundamental representations of $SU(N)$, and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of $SU(N)$ to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-$n$ limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.arXiv:2305.19345CERN-TH-2023-085oai:cds.cern.ch:28606422023-05-30 |
spellingShingle | math.MP Mathematical Physics and Mathematics math-ph Mathematical Physics and Mathematics cond-mat.stat-mech hep-th Particle Physics - Theory Polychronakos, Alexios P. Sfetsos, Konstantinos Composing arbitrarily many $SU(N)$ fundamentals |
title | Composing arbitrarily many $SU(N)$ fundamentals |
title_full | Composing arbitrarily many $SU(N)$ fundamentals |
title_fullStr | Composing arbitrarily many $SU(N)$ fundamentals |
title_full_unstemmed | Composing arbitrarily many $SU(N)$ fundamentals |
title_short | Composing arbitrarily many $SU(N)$ fundamentals |
title_sort | composing arbitrarily many $su(n)$ fundamentals |
topic | math.MP Mathematical Physics and Mathematics math-ph Mathematical Physics and Mathematics cond-mat.stat-mech hep-th Particle Physics - Theory |
url | https://dx.doi.org/10.1016/j.nuclphysb.2023.116314 http://cds.cern.ch/record/2860642 |
work_keys_str_mv | AT polychronakosalexiosp composingarbitrarilymanysunfundamentals AT sfetsoskonstantinos composingarbitrarilymanysunfundamentals |