Cargando…

Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills

The planar integrability of $\mathcal{N}=4$ super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the ${\rm SU}(2)$$\mathcal{N}=4$ SYM provides another interesting solvable corner which exhibits striking similarities despite being far from...

Descripción completa

Detalles Bibliográficos
Autores principales: Caetano, João, Komatsu, Shota, Wang, Yifan
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:http://cds.cern.ch/record/2860777
_version_ 1780977768472772608
author Caetano, João
Komatsu, Shota
Wang, Yifan
author_facet Caetano, João
Komatsu, Shota
Wang, Yifan
author_sort Caetano, João
collection CERN
description The planar integrability of $\mathcal{N}=4$ super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the ${\rm SU}(2)$$\mathcal{N}=4$ SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators with $R$-charge $J$ in the limit $J\to\infty$ with $\lambda_{J}\equiv g_{\rm YM}^2 J/2$ fixed. The dynamics in this {\it large charge 't Hooft limit} is constrained by a centrally-extended $\mathfrak{psu}(2|2)^2$ symmetry that played a crucial role for the planar integrability. To the leading order in $1/J$, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general ${\rm SU}(N)$ gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of size $J/2$ that reproduces our large charge result at $N=2$. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin 't Hooft limit, the combined large $N$-large $J$ limits, and applications to general $\mathcal{N}=2$ superconformal field theories.
id cern-2860777
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2023
record_format invenio
spelling cern-28607772023-07-27T03:44:46Zhttp://cds.cern.ch/record/2860777engCaetano, JoãoKomatsu, ShotaWang, YifanLarge Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Millshep-thParticle Physics - TheoryThe planar integrability of $\mathcal{N}=4$ super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the ${\rm SU}(2)$$\mathcal{N}=4$ SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators with $R$-charge $J$ in the limit $J\to\infty$ with $\lambda_{J}\equiv g_{\rm YM}^2 J/2$ fixed. The dynamics in this {\it large charge 't Hooft limit} is constrained by a centrally-extended $\mathfrak{psu}(2|2)^2$ symmetry that played a crucial role for the planar integrability. To the leading order in $1/J$, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general ${\rm SU}(N)$ gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of size $J/2$ that reproduces our large charge result at $N=2$. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin 't Hooft limit, the combined large $N$-large $J$ limits, and applications to general $\mathcal{N}=2$ superconformal field theories.arXiv:2306.00929CERN-TH-2023-089oai:cds.cern.ch:28607772023-06-01
spellingShingle hep-th
Particle Physics - Theory
Caetano, João
Komatsu, Shota
Wang, Yifan
Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title_full Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title_fullStr Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title_full_unstemmed Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title_short Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills
title_sort large charge 't hooft limit of $\mathcal{n}=4$ super-yang-mills
topic hep-th
Particle Physics - Theory
url http://cds.cern.ch/record/2860777
work_keys_str_mv AT caetanojoao largechargethooftlimitofmathcaln4superyangmills
AT komatsushota largechargethooftlimitofmathcaln4superyangmills
AT wangyifan largechargethooftlimitofmathcaln4superyangmills