Cargando…
Machine Learning Techniques for JetMET Data Certification of the CMS Detector
In CMS, data quality monitoring (DQM) and data certification (DC) are crucial components in ensuring reliable data quality suitable for physics analysis. In the offline DQM procedure, the quality of recorded data, grouped in "runs", is evaluated. The current method for certification of qua...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2860924 |
Ejemplares similares
-
Performance of JetMET high level trigger algorithms in the CMS experiment using proton-proton collisions data at $\sqrt{s}$ = 13 TeV during Run-2
por: CMS Collaboration
Publicado: (2022) -
Tracker DQM Machine Learning studies for data certification
por: CMS Collaboration
Publicado: (2021) -
Machine learning technique for signal-background separation of nuclear interaction vertices in the CMS detector
por: CMS Collaboration
Publicado: (2020) -
MET Performance in 2011 CMS Data
por: CMS Collaboration
Publicado: (2012) -
Development of data certification for CMS gas electron multiplier detector using cosmic ray muons and proton-proton collisions
por: CMS Collaboration
Publicado: (2022)