Cargando…
A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced fro...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1038/s41598-023-35435-7 http://cds.cern.ch/record/2861073 |
_version_ | 1780977794051735552 |
---|---|
author | Dewhurst, KayA Muratori, Bruno D Brunetti, Enrico van derGeer, Bas de Loos, Marieke Owen, Hywel L Wiggins, S Mark Jaroszynski, Dino A |
author_facet | Dewhurst, KayA Muratori, Bruno D Brunetti, Enrico van derGeer, Bas de Loos, Marieke Owen, Hywel L Wiggins, S Mark Jaroszynski, Dino A |
author_sort | Dewhurst, KayA |
collection | CERN |
description | Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ($R_{56}$): we demonstrate values of + 0.20 mm, 0.00 mm and − 0.22 mm. Positive or negative values of $R_{56}$ apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs. |
id | cern-2861073 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28610732023-06-07T18:56:34Zdoi:10.1038/s41598-023-35435-7http://cds.cern.ch/record/2861073engDewhurst, KayAMuratori, Bruno DBrunetti, Enricovan derGeer, Basde Loos, MariekeOwen, Hywel LWiggins, S MarkJaroszynski, Dino AA beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulatorPhysics in GeneralLaser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ($R_{56}$): we demonstrate values of + 0.20 mm, 0.00 mm and − 0.22 mm. Positive or negative values of $R_{56}$ apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs.oai:cds.cern.ch:28610732023 |
spellingShingle | Physics in General Dewhurst, KayA Muratori, Bruno D Brunetti, Enrico van derGeer, Bas de Loos, Marieke Owen, Hywel L Wiggins, S Mark Jaroszynski, Dino A A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title | A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title_full | A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title_fullStr | A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title_full_unstemmed | A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title_short | A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
title_sort | beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator |
topic | Physics in General |
url | https://dx.doi.org/10.1038/s41598-023-35435-7 http://cds.cern.ch/record/2861073 |
work_keys_str_mv | AT dewhurstkaya abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT muratoribrunod abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT brunettienrico abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT vandergeerbas abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT deloosmarieke abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT owenhywell abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT wigginssmark abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT jaroszynskidinoa abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT dewhurstkaya beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT muratoribrunod beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT brunettienrico beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT vandergeerbas beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT deloosmarieke beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT owenhywell beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT wigginssmark beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator AT jaroszynskidinoa beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator |