Cargando…

A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator

Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Dewhurst, KayA, Muratori, Bruno D, Brunetti, Enrico, van derGeer, Bas, de Loos, Marieke, Owen, Hywel L, Wiggins, S Mark, Jaroszynski, Dino A
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:https://dx.doi.org/10.1038/s41598-023-35435-7
http://cds.cern.ch/record/2861073
_version_ 1780977794051735552
author Dewhurst, KayA
Muratori, Bruno D
Brunetti, Enrico
van derGeer, Bas
de Loos, Marieke
Owen, Hywel L
Wiggins, S Mark
Jaroszynski, Dino A
author_facet Dewhurst, KayA
Muratori, Bruno D
Brunetti, Enrico
van derGeer, Bas
de Loos, Marieke
Owen, Hywel L
Wiggins, S Mark
Jaroszynski, Dino A
author_sort Dewhurst, KayA
collection CERN
description Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ($R_{56}$): we demonstrate values of + 0.20 mm, 0.00  mm and − 0.22 mm. Positive or negative values of $R_{56}$ apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs.
id cern-2861073
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2023
record_format invenio
spelling cern-28610732023-06-07T18:56:34Zdoi:10.1038/s41598-023-35435-7http://cds.cern.ch/record/2861073engDewhurst, KayAMuratori, Bruno DBrunetti, Enricovan derGeer, Basde Loos, MariekeOwen, Hywel LWiggins, S MarkJaroszynski, Dino AA beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulatorPhysics in GeneralLaser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp. However, both LWFAs and FELs have strict parameter requirements. The bunch chirp created using ideal LWFA parameters may not suit the FEL; for example, a chirp can reduce the high peak current required for free-electron lasing. We, therefore, design a flexible beamline that can accept either positively or negatively chirped LWFA bunches and adjust the chirp during transport to an undulator. We have used the accelerator design program MAD8 to design a beamline in stages, and to track particle bunches. The final beamline design can produce ambidirectional values of longitudinal dispersion ($R_{56}$): we demonstrate values of + 0.20 mm, 0.00  mm and − 0.22 mm. Positive or negative values of $R_{56}$ apply a shear forward or backward in the longitudinal phase space of the electron bunch, which provides control of the bunch chirp. This chirp control during the bunch transport gives an additional free parameter and marks a new approach to matching future LWFA-driven FELs.oai:cds.cern.ch:28610732023
spellingShingle Physics in General
Dewhurst, KayA
Muratori, Bruno D
Brunetti, Enrico
van derGeer, Bas
de Loos, Marieke
Owen, Hywel L
Wiggins, S Mark
Jaroszynski, Dino A
A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title_full A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title_fullStr A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title_full_unstemmed A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title_short A beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
title_sort beamline to control longitudinal phase space whilst transporting laser wakefield accelerated electrons to an undulator
topic Physics in General
url https://dx.doi.org/10.1038/s41598-023-35435-7
http://cds.cern.ch/record/2861073
work_keys_str_mv AT dewhurstkaya abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT muratoribrunod abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT brunettienrico abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT vandergeerbas abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT deloosmarieke abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT owenhywell abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT wigginssmark abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT jaroszynskidinoa abeamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT dewhurstkaya beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT muratoribrunod beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT brunettienrico beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT vandergeerbas beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT deloosmarieke beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT owenhywell beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT wigginssmark beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator
AT jaroszynskidinoa beamlinetocontrollongitudinalphasespacewhilsttransportinglaserwakefieldacceleratedelectronstoanundulator