Cargando…
Optimizing Graph Neural Networks for Jet Tagging in Particle Physics on FPGAs
This work proposes a novel reconfigurable architecture for reducing the latency of JEDI-net, a Graph Neural Network (GNN) based algorithm for jet tagging in particle physics, which achieves state-of-the-art accuracy. Accelerating JEDI-net is challenging since it requires low latency to deploy the ne...
Autores principales: | Que, Zhiqiang, Loo, Marcus, Fan, Hongxiang, Pierini, Maurizio, Tapper, Alexander, Luk, Wayne |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/FPL57034.2022.00057 http://cds.cern.ch/record/2861082 |
Ejemplares similares
-
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
por: Heintz, Aneesh, et al.
Publicado: (2020) -
Design recipes for FPGAs
por: Wilson, Peter R
Publicado: (2007) -
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
por: Iiyama, Yutaro, et al.
Publicado: (2020) -
Fast inference of deep neural networks in FPGAs for particle physics
por: Duarte, Javier, et al.
Publicado: (2018) -
hls4ml: deploying deep learning on FPGAs for L1 trigger and Data Acquisition
por: Duarte, Javier, et al.
Publicado: (2019)