Cargando…
_version_ 1780977823289180160
author Zurlo, N
Amsler, C
Antonello, M
Belov, A
Bonomi, G
Brusa, R S
Cacciad, M
Camper, A
Caravita, R
Castelli, F
Cheinet, P
Comparat, D
Consolati, G
Demetrio, A
Di Noto, L
Doser, M
Fanì, M
Ferragut, R
Fesel, J
Gerber, S
Giammarchi, M
Gligorova, A
Glöggler, L T
Guatieri, F
Haider, S
Hinterberger, A
Kellerbauer, A
Khalidova, O
Krasnický, D
Lagomarsino, V
Malbrunot, C
Mariazzi, S
Matveev, V
Müller, R
Nebbia, G
Nedelec, P
Nowak, L
Oberthaler, M
Oswald, E
Pagano, D
Penasa, L
Petracek, V
Povolo, L
Prelz, F
Prevedelli, M
Rienäcker, B
Røhne, O M
Rotondi, A
Sandaker, H
Santoro, R
Testera, G
Tietje, I C
Toso, V
Wolz, T
Yzombard, P
Zimmer, C
author_facet Zurlo, N
Amsler, C
Antonello, M
Belov, A
Bonomi, G
Brusa, R S
Cacciad, M
Camper, A
Caravita, R
Castelli, F
Cheinet, P
Comparat, D
Consolati, G
Demetrio, A
Di Noto, L
Doser, M
Fanì, M
Ferragut, R
Fesel, J
Gerber, S
Giammarchi, M
Gligorova, A
Glöggler, L T
Guatieri, F
Haider, S
Hinterberger, A
Kellerbauer, A
Khalidova, O
Krasnický, D
Lagomarsino, V
Malbrunot, C
Mariazzi, S
Matveev, V
Müller, R
Nebbia, G
Nedelec, P
Nowak, L
Oberthaler, M
Oswald, E
Pagano, D
Penasa, L
Petracek, V
Povolo, L
Prelz, F
Prevedelli, M
Rienäcker, B
Røhne, O M
Rotondi, A
Sandaker, H
Santoro, R
Testera, G
Tietje, I C
Toso, V
Wolz, T
Yzombard, P
Zimmer, C
author_sort Zurlo, N
collection CERN
description Cold antihydrogen atoms are a powerful tool to probe the validity of fundamental physics laws, and it's clear that colder atoms, generally speaking, allow an increased level of precision. After the first production of cold antihydrogen ($\bar{H}$) in 2002, experimental efforts have progressed continuously (trapping, beam formation, spectroscopy), with competitive results already achieved by adapting to cold antiatoms techniques previously well developed for ordinary atoms. Unfortunately, the number of $\bar{H}$ atoms that can be produced in dedicated experiments is many orders of magnitude smaller than available hydrogen atoms, which are at hand in large amount, so the development of novel techniques that allow the production of $\bar{H}$ with well defined conditions (and possibly control its formation time and energy levels) is essential to improve the sensitivity of the methods applied by the different experiments. We present here the first experimental results concerning the production of $\bar{H}$ in a pulsed mode where the time when 90\% of the atoms are produced is known with an uncertainty of around 250~ns. The pulsed $\bar{H}$ source is generated by the charge-exchange reaction between Rydberg positronium atoms ($Ps$) and trapped antiprotons ($\bar{p}$), cooled and manipulated in an electromagnetic trap: $$ \bar{ p}+Ps^* \rightarrow \bar{H}^* + e^- $$ where Rydberg positronium atoms, in turn, are produced through the implantation of a pulsed positron beam into a mesoporous silica target, and are excited by two subsequent laser pulses, the first to $n=3$, the second to the needed Rydberg level ($n \simeq 17$). The pulsed production allows the control of the antihydrogen temperature, and facilitates the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In fact, the production of pulsed antihydrogen is a major milestone in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.
id cern-2861354
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28613542023-06-09T20:08:13Zdoi:10.22323/1.405.0079http://cds.cern.ch/record/2861354engZurlo, NAmsler, CAntonello, MBelov, ABonomi, GBrusa, R SCacciad, MCamper, ACaravita, RCastelli, FCheinet, PComparat, DConsolati, GDemetrio, ADi Noto, LDoser, MFanì, MFerragut, RFesel, JGerber, SGiammarchi, MGligorova, AGlöggler, L TGuatieri, FHaider, SHinterberger, AKellerbauer, AKhalidova, OKrasnický, DLagomarsino, VMalbrunot, CMariazzi, SMatveev, VMüller, RNebbia, GNedelec, PNowak, LOberthaler, MOswald, EPagano, DPenasa, LPetracek, VPovolo, LPrelz, FPrevedelli, MRienäcker, BRøhne, O MRotondi, ASandaker, HSantoro, RTestera, GTietje, I CToso, VWolz, TYzombard, PZimmer, CPulsed Production of Antihydrogen in AEgISAccelerators and Storage RingsCold antihydrogen atoms are a powerful tool to probe the validity of fundamental physics laws, and it's clear that colder atoms, generally speaking, allow an increased level of precision. After the first production of cold antihydrogen ($\bar{H}$) in 2002, experimental efforts have progressed continuously (trapping, beam formation, spectroscopy), with competitive results already achieved by adapting to cold antiatoms techniques previously well developed for ordinary atoms. Unfortunately, the number of $\bar{H}$ atoms that can be produced in dedicated experiments is many orders of magnitude smaller than available hydrogen atoms, which are at hand in large amount, so the development of novel techniques that allow the production of $\bar{H}$ with well defined conditions (and possibly control its formation time and energy levels) is essential to improve the sensitivity of the methods applied by the different experiments. We present here the first experimental results concerning the production of $\bar{H}$ in a pulsed mode where the time when 90\% of the atoms are produced is known with an uncertainty of around 250~ns. The pulsed $\bar{H}$ source is generated by the charge-exchange reaction between Rydberg positronium atoms ($Ps$) and trapped antiprotons ($\bar{p}$), cooled and manipulated in an electromagnetic trap: $$ \bar{ p}+Ps^* \rightarrow \bar{H}^* + e^- $$ where Rydberg positronium atoms, in turn, are produced through the implantation of a pulsed positron beam into a mesoporous silica target, and are excited by two subsequent laser pulses, the first to $n=3$, the second to the needed Rydberg level ($n \simeq 17$). The pulsed production allows the control of the antihydrogen temperature, and facilitates the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. In fact, the production of pulsed antihydrogen is a major milestone in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.oai:cds.cern.ch:28613542022
spellingShingle Accelerators and Storage Rings
Zurlo, N
Amsler, C
Antonello, M
Belov, A
Bonomi, G
Brusa, R S
Cacciad, M
Camper, A
Caravita, R
Castelli, F
Cheinet, P
Comparat, D
Consolati, G
Demetrio, A
Di Noto, L
Doser, M
Fanì, M
Ferragut, R
Fesel, J
Gerber, S
Giammarchi, M
Gligorova, A
Glöggler, L T
Guatieri, F
Haider, S
Hinterberger, A
Kellerbauer, A
Khalidova, O
Krasnický, D
Lagomarsino, V
Malbrunot, C
Mariazzi, S
Matveev, V
Müller, R
Nebbia, G
Nedelec, P
Nowak, L
Oberthaler, M
Oswald, E
Pagano, D
Penasa, L
Petracek, V
Povolo, L
Prelz, F
Prevedelli, M
Rienäcker, B
Røhne, O M
Rotondi, A
Sandaker, H
Santoro, R
Testera, G
Tietje, I C
Toso, V
Wolz, T
Yzombard, P
Zimmer, C
Pulsed Production of Antihydrogen in AEgIS
title Pulsed Production of Antihydrogen in AEgIS
title_full Pulsed Production of Antihydrogen in AEgIS
title_fullStr Pulsed Production of Antihydrogen in AEgIS
title_full_unstemmed Pulsed Production of Antihydrogen in AEgIS
title_short Pulsed Production of Antihydrogen in AEgIS
title_sort pulsed production of antihydrogen in aegis
topic Accelerators and Storage Rings
url https://dx.doi.org/10.22323/1.405.0079
http://cds.cern.ch/record/2861354
work_keys_str_mv AT zurlon pulsedproductionofantihydrogeninaegis
AT amslerc pulsedproductionofantihydrogeninaegis
AT antonellom pulsedproductionofantihydrogeninaegis
AT belova pulsedproductionofantihydrogeninaegis
AT bonomig pulsedproductionofantihydrogeninaegis
AT brusars pulsedproductionofantihydrogeninaegis
AT cacciadm pulsedproductionofantihydrogeninaegis
AT campera pulsedproductionofantihydrogeninaegis
AT caravitar pulsedproductionofantihydrogeninaegis
AT castellif pulsedproductionofantihydrogeninaegis
AT cheinetp pulsedproductionofantihydrogeninaegis
AT comparatd pulsedproductionofantihydrogeninaegis
AT consolatig pulsedproductionofantihydrogeninaegis
AT demetrioa pulsedproductionofantihydrogeninaegis
AT dinotol pulsedproductionofantihydrogeninaegis
AT doserm pulsedproductionofantihydrogeninaegis
AT fanim pulsedproductionofantihydrogeninaegis
AT ferragutr pulsedproductionofantihydrogeninaegis
AT feselj pulsedproductionofantihydrogeninaegis
AT gerbers pulsedproductionofantihydrogeninaegis
AT giammarchim pulsedproductionofantihydrogeninaegis
AT gligorovaa pulsedproductionofantihydrogeninaegis
AT glogglerlt pulsedproductionofantihydrogeninaegis
AT guatierif pulsedproductionofantihydrogeninaegis
AT haiders pulsedproductionofantihydrogeninaegis
AT hinterbergera pulsedproductionofantihydrogeninaegis
AT kellerbauera pulsedproductionofantihydrogeninaegis
AT khalidovao pulsedproductionofantihydrogeninaegis
AT krasnickyd pulsedproductionofantihydrogeninaegis
AT lagomarsinov pulsedproductionofantihydrogeninaegis
AT malbrunotc pulsedproductionofantihydrogeninaegis
AT mariazzis pulsedproductionofantihydrogeninaegis
AT matveevv pulsedproductionofantihydrogeninaegis
AT mullerr pulsedproductionofantihydrogeninaegis
AT nebbiag pulsedproductionofantihydrogeninaegis
AT nedelecp pulsedproductionofantihydrogeninaegis
AT nowakl pulsedproductionofantihydrogeninaegis
AT oberthalerm pulsedproductionofantihydrogeninaegis
AT oswalde pulsedproductionofantihydrogeninaegis
AT paganod pulsedproductionofantihydrogeninaegis
AT penasal pulsedproductionofantihydrogeninaegis
AT petracekv pulsedproductionofantihydrogeninaegis
AT povolol pulsedproductionofantihydrogeninaegis
AT prelzf pulsedproductionofantihydrogeninaegis
AT prevedellim pulsedproductionofantihydrogeninaegis
AT rienackerb pulsedproductionofantihydrogeninaegis
AT røhneom pulsedproductionofantihydrogeninaegis
AT rotondia pulsedproductionofantihydrogeninaegis
AT sandakerh pulsedproductionofantihydrogeninaegis
AT santoror pulsedproductionofantihydrogeninaegis
AT testerag pulsedproductionofantihydrogeninaegis
AT tietjeic pulsedproductionofantihydrogeninaegis
AT tosov pulsedproductionofantihydrogeninaegis
AT wolzt pulsedproductionofantihydrogeninaegis
AT yzombardp pulsedproductionofantihydrogeninaegis
AT zimmerc pulsedproductionofantihydrogeninaegis