Cargando…
Voltage scanning and technical upgrades at the Collinear Resonance Ionization Spectroscopy experiment
To optimize the performance of the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at CERN-ISOLDE, technical upgrades are continuously introduced, aiming to enhance its sensitivity, precision, stability, and efficiency. Recently, a voltage-scanning setup was developed and commissioned...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nimb.2023.04.054 http://cds.cern.ch/record/2861815 |
Sumario: | To optimize the performance of the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at CERN-ISOLDE, technical upgrades are continuously introduced, aiming to enhance its sensitivity, precision, stability, and efficiency. Recently, a voltage-scanning setup was developed and commissioned at CRIS, which improved the scanning speed by a factor of three as compared to the current laser-frequency scanning approach. This leads to faster measurements of the hyperfine structure for systems with high yields (more than a few thousand ions per second). Additionally, several beamline sections have been redesigned and manufactured, including a new field-ionization unit, an electrostatic bend with a larger deflection angle, and improved ion optics. The beamline upgrades are expected to yield an improvement of at least a factor of 5 in the signal-to-noise ratio by avoiding the use of high-power lasers (which yield non-resonantly produced ions) and providing time-of-flight separation between the resonant ions and the collisional background. |
---|