Cargando…
Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron
In accelerator physics, the need to improve the performance and better control the operating point of an accelerator has become, year after year, an increasingly important need in order to achieve higher energies and brightness, as well as point-like particle beams. If this involves increasingly adv...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2862526 |
_version_ | 1780977873735122944 |
---|---|
author | Russo, Giulia |
author_facet | Russo, Giulia |
author_sort | Russo, Giulia |
collection | CERN |
description | In accelerator physics, the need to improve the performance and better control the operating point of an accelerator has become, year after year, an increasingly important need in order to achieve higher energies and brightness, as well as point-like particle beams. If this involves increasingly advanced technological developments (in terms, for example, of materials for more intense superconducting magnets), it can not take place in the absence of targeted studies of linear and non-linear beam dynamics. In the context of this Ph.D. thesis in physics, linear and non-linear dynamics of charged particles in circular accelerators is the topic that will be discussed and treated in detail. In particular, the presentation and discussion of the results will be divided in two main topics: the need to know the physical properties of a proton beam; and the development of innovative methods to determine and study the accelerator’s working point. With regard to the first topic, an innovative procedure will be presented to determine the transverse size of the PS beam in the beam extraction phase. Among the different ways the extraction occurs at the PS, the analysed one is based on the transverse splitting of the beam by means of non-linear fields. Thus, the knowledge of the transverse beam size is not trivial since resonant linear and non-linear beam structures (namely, core and islands) arise and, for each of them, the beam size has to be quantified. This parameter is crucial for two main reasons: the accelerator that will receive the beam exiting the upstream accelerator may have restrictions (physical or magnetic) that involve a partial or total loss of the incoming beam; and any experiments located downstream of the considered accelerator may need a beam with a transversal size as constant as possible; consequently, its monitoring and control are essential. The second topic concerns the accurate determination of the working point of an accelerator, defined as the number of transverse oscillations the particle beam travels per unit of accelerator circumference, both horizontally and vertically. This quantity is called horizontal and vertical tune, respectively. Their knowledge is also crucial to understand whether the beam will be stable or unstable. In fact, not all tune values are acceptable, as there are particular values that bring the beam into resonance. In this configuration, the amplitude of the transverse oscillations of the particles increases in an uncontrolled manner and leads to the loss of all or part of the beam. Note that, in particular operating conditions, the resonant conditions are sought and desired to model, in a suitable way, the transversal shape of the beam, such as the above mentioned PS extraction scheme. It is even clearer how much the determination of the machine working point is essential to determine the operating conditions of an accelerator. In this context, several methods (also taken from the field of applied mathematics) to calculate the tune will be demonstrated and tested numerically on different types of synthetic signals. At the end of this description, the use of experimental data will allow to obtain the benchmark of a new method for the direct calculation of some characteristic quantities of non-linear beam dynamics (namely, the amplitude detuning, i.e. the variation of tune as a function of intensity of the perturbation provided to the beam). |
id | cern-2862526 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2023 |
record_format | invenio |
spelling | cern-28625262023-07-17T14:11:02Zhttp://cds.cern.ch/record/2862526engRusso, GiuliaPrecise tune determination and split beam emittance reconstruction at the CERN PS synchrotronAccelerators and Storage RingsIn accelerator physics, the need to improve the performance and better control the operating point of an accelerator has become, year after year, an increasingly important need in order to achieve higher energies and brightness, as well as point-like particle beams. If this involves increasingly advanced technological developments (in terms, for example, of materials for more intense superconducting magnets), it can not take place in the absence of targeted studies of linear and non-linear beam dynamics. In the context of this Ph.D. thesis in physics, linear and non-linear dynamics of charged particles in circular accelerators is the topic that will be discussed and treated in detail. In particular, the presentation and discussion of the results will be divided in two main topics: the need to know the physical properties of a proton beam; and the development of innovative methods to determine and study the accelerator’s working point. With regard to the first topic, an innovative procedure will be presented to determine the transverse size of the PS beam in the beam extraction phase. Among the different ways the extraction occurs at the PS, the analysed one is based on the transverse splitting of the beam by means of non-linear fields. Thus, the knowledge of the transverse beam size is not trivial since resonant linear and non-linear beam structures (namely, core and islands) arise and, for each of them, the beam size has to be quantified. This parameter is crucial for two main reasons: the accelerator that will receive the beam exiting the upstream accelerator may have restrictions (physical or magnetic) that involve a partial or total loss of the incoming beam; and any experiments located downstream of the considered accelerator may need a beam with a transversal size as constant as possible; consequently, its monitoring and control are essential. The second topic concerns the accurate determination of the working point of an accelerator, defined as the number of transverse oscillations the particle beam travels per unit of accelerator circumference, both horizontally and vertically. This quantity is called horizontal and vertical tune, respectively. Their knowledge is also crucial to understand whether the beam will be stable or unstable. In fact, not all tune values are acceptable, as there are particular values that bring the beam into resonance. In this configuration, the amplitude of the transverse oscillations of the particles increases in an uncontrolled manner and leads to the loss of all or part of the beam. Note that, in particular operating conditions, the resonant conditions are sought and desired to model, in a suitable way, the transversal shape of the beam, such as the above mentioned PS extraction scheme. It is even clearer how much the determination of the machine working point is essential to determine the operating conditions of an accelerator. In this context, several methods (also taken from the field of applied mathematics) to calculate the tune will be demonstrated and tested numerically on different types of synthetic signals. At the end of this description, the use of experimental data will allow to obtain the benchmark of a new method for the direct calculation of some characteristic quantities of non-linear beam dynamics (namely, the amplitude detuning, i.e. the variation of tune as a function of intensity of the perturbation provided to the beam).CERN-THESIS-2022-362oai:cds.cern.ch:28625262023-06-21T10:13:53Z |
spellingShingle | Accelerators and Storage Rings Russo, Giulia Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title | Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title_full | Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title_fullStr | Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title_full_unstemmed | Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title_short | Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron |
title_sort | precise tune determination and split beam emittance reconstruction at the cern ps synchrotron |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/2862526 |
work_keys_str_mv | AT russogiulia precisetunedeterminationandsplitbeamemittancereconstructionatthecernpssynchrotron |