Cargando…
Traintracks All the Way Down
We study the class of planar Feynman integrals that can be constructed by sequentially intersecting traintrack diagrams without forming a closed traintrack loop. After describing how to derive a $2L$-fold integral representation of any $L$-loop diagram in this class, we provide evidence that their l...
Autores principales: | McLeod, Andrew J., von Hippel, Matt |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2862720 |
Ejemplares similares
-
An Infinite Family of Elliptic Ladder Integrals
por: McLeod, Andrew, et al.
Publicado: (2023) -
The Steinmann Cluster Bootstrap for $N$ = 4 Super Yang-Mills Amplitudes
por: Caron-Huot, Simon, et al.
Publicado: (2020) -
Constraints on Sequential Discontinuities from the Geometry of On-shell Spaces
por: Hannesdottir, Holmfridur S., et al.
Publicado: (2022) -
Genus Drop in Hyperelliptic Feynman Integrals
por: Marzucca, Robin, et al.
Publicado: (2023) -
Bootstrapping six-gluon scattering in planar ${\cal N}=4$ super-Yang-Mills theory
por: Dixon, Lance J, et al.
Publicado: (2014)