Cargando…

Homological Link Invariants from Floer Theory

There is a generalization of Heegaard-Floer theory from ${\mathfrak{gl}}_{1|1}$ to other Lie (super)algebras $^L{\mathfrak{g}}$. The corresponding category of A-branes is solvable explicitly and categorifies quantum $U_q(^L{\mathfrak{g}})$ link invariants. The theory was discovered in \cite{A1,A2},...

Descripción completa

Detalles Bibliográficos
Autores principales: Aganagic, Mina, LePage, Elise, Rapcak, Miroslav
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:http://cds.cern.ch/record/2863023
_version_ 1780977897345908736
author Aganagic, Mina
LePage, Elise
Rapcak, Miroslav
author_facet Aganagic, Mina
LePage, Elise
Rapcak, Miroslav
author_sort Aganagic, Mina
collection CERN
description There is a generalization of Heegaard-Floer theory from ${\mathfrak{gl}}_{1|1}$ to other Lie (super)algebras $^L{\mathfrak{g}}$. The corresponding category of A-branes is solvable explicitly and categorifies quantum $U_q(^L{\mathfrak{g}})$ link invariants. The theory was discovered in \cite{A1,A2}, using homological mirror symmetry. It has novel features, including equivariance and, if $^L{\mathfrak{g}} \neq {\mathfrak{gl}}_{1|1}$, coefficients in categories. In this paper, we describe the theory and how it is solved in detail in the two simplest cases: the ${\mathfrak{gl}}_{1|1}$ theory itself, categorifying the Alexander polynomial, and the ${\mathfrak{su}}_{2}$ theory, categorifying the Jones polynomial. Our approach to solving the theory is new, even in the familiar ${\mathfrak{gl}}_{1|1}$ case.
id cern-2863023
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2023
record_format invenio
spelling cern-28630232023-10-03T15:53:06Zhttp://cds.cern.ch/record/2863023engAganagic, MinaLePage, EliseRapcak, MiroslavHomological Link Invariants from Floer Theorymath.SGMathematical Physics and Mathematicsmath.RTMathematical Physics and Mathematicsmath.QAMathematical Physics and Mathematicsmath.AGMathematical Physics and Mathematicshep-thParticle Physics - TheoryThere is a generalization of Heegaard-Floer theory from ${\mathfrak{gl}}_{1|1}$ to other Lie (super)algebras $^L{\mathfrak{g}}$. The corresponding category of A-branes is solvable explicitly and categorifies quantum $U_q(^L{\mathfrak{g}})$ link invariants. The theory was discovered in \cite{A1,A2}, using homological mirror symmetry. It has novel features, including equivariance and, if $^L{\mathfrak{g}} \neq {\mathfrak{gl}}_{1|1}$, coefficients in categories. In this paper, we describe the theory and how it is solved in detail in the two simplest cases: the ${\mathfrak{gl}}_{1|1}$ theory itself, categorifying the Alexander polynomial, and the ${\mathfrak{su}}_{2}$ theory, categorifying the Jones polynomial. Our approach to solving the theory is new, even in the familiar ${\mathfrak{gl}}_{1|1}$ case.arXiv:2305.13480oai:cds.cern.ch:28630232023-05-22
spellingShingle math.SG
Mathematical Physics and Mathematics
math.RT
Mathematical Physics and Mathematics
math.QA
Mathematical Physics and Mathematics
math.AG
Mathematical Physics and Mathematics
hep-th
Particle Physics - Theory
Aganagic, Mina
LePage, Elise
Rapcak, Miroslav
Homological Link Invariants from Floer Theory
title Homological Link Invariants from Floer Theory
title_full Homological Link Invariants from Floer Theory
title_fullStr Homological Link Invariants from Floer Theory
title_full_unstemmed Homological Link Invariants from Floer Theory
title_short Homological Link Invariants from Floer Theory
title_sort homological link invariants from floer theory
topic math.SG
Mathematical Physics and Mathematics
math.RT
Mathematical Physics and Mathematics
math.QA
Mathematical Physics and Mathematics
math.AG
Mathematical Physics and Mathematics
hep-th
Particle Physics - Theory
url http://cds.cern.ch/record/2863023
work_keys_str_mv AT aganagicmina homologicallinkinvariantsfromfloertheory
AT lepageelise homologicallinkinvariantsfromfloertheory
AT rapcakmiroslav homologicallinkinvariantsfromfloertheory