Cargando…
End-to-end Deep Learning Inference in CMS software framework
Deep learning techniques have been proven to provide excellent performance for a variety of high energy physics applications, such as particle identification, event reconstruction and trigger operations. Using low-level detector information in end-to-end deep learning approach allows to probe the po...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2863315 |
Ejemplares similares
-
Exploring End-to-end Deep Learning Applications for Event Classification at CMS
por: Andrews, Michael Benjamin, et al.
Publicado: (2018) -
End-to-end deep learning inference with CMSSW via ONNX using Docker
por: Chudasama, Ruchi
Publicado: (2023) -
Performance comparison of CMS RPC system using cosmic rays data from end of Run-2 and end of LS2
por: CMS Collaboration
Publicado: (2021) -
40 MHz Scouting with Deep Learning in CMS
por: CMS Collaboration
Publicado: (2022) -
Software and DAQ for the CMS Silicon Tracker Front End Driver
por: Fulcher, J, et al.
Publicado: (2004)