Cargando…
Machine learning for sampling high-dimensional probability distributions in lattice field theory
<!--HTML--><p>As machine learning algorithms continue to enable and accelerate physics calculations, the development of problem-specific physics-informed machine learning approaches is becoming more sophisticated, impactful, and important. I will describe recent advances in generative mo...
Autor principal: | Shanahan, Phiala |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2864072 |
Ejemplares similares
-
Learning to discover: machine learning in high-energy physics
por: Kégl, Balázs
Publicado: (2014) -
Machine Learning applications in CMS
por: Stoye, Markus
Publicado: (2017) -
Tracking at Hadron Colliders with Machine Learning
por: Vlimant, Jean-Roch
Publicado: (2019) -
Real-time Machine Learning in particle physics
por: Aarrestad, Thea
Publicado: (2022) -
How the machine learning conquers reconstruction in neutrino experiments
por: Sulej, Robert
Publicado: (2017)