Cargando…

Transformation of transverse momentum distributions from Parton Branching to Collins-Soper-Sterman framework

Two main frameworks for defining transverse momentum dependent (TMD) parton densities are the Collins-Soper-Sterman (CSS) formalism, and the Parton Branching (PB) approach. While PB-TMDs have an explicit dependence on a single scale which is used to evolve PB-TMDs in momentum space, TMDs defined in...

Descripción completa

Detalles Bibliográficos
Autor principal: Bermudez Martinez, Armando
Lenguaje:eng
Publicado: 2023
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.physletb.2023.138182
http://cds.cern.ch/record/2864999
Descripción
Sumario:Two main frameworks for defining transverse momentum dependent (TMD) parton densities are the Collins-Soper-Sterman (CSS) formalism, and the Parton Branching (PB) approach. While PB-TMDs have an explicit dependence on a single scale which is used to evolve PB-TMDs in momentum space, TMDs defined in CSS formalism present a double-scale evolution in renormalization and rapidity scales, via a pair of coupled evolution equations. In this letter I leverage the Collins-Soper kernel determined from simulated Drell Yan transverse momentum spectra using PB-TMDs, and provide, for the first time, the transformation of TMD parton distributions from the PB framework to the CSS formalism. The evolved PB-TMDs in $b$-space are compared to the recently released, unpolarized TMD distribution ART23.