Cargando…
Graph Neural Networks: From fundamentals to Physics application
<!--HTML--><h2><span style="font-size:18.0pt;">Abstract</span></h2><p>Non-Euclidean data structures are present everywhere in the physical and digital world. In recent years, an increasing number of scientific fields have started to leverage the informat...
Autor principal: | Tsaklidis, Ilias |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2865379 |
Ejemplares similares
-
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Deep Graph Neural Networks for Fast HGCAL Simulation
por: Kansal, Raghav
Publicado: (2019) -
Graph Neural Networks: From fundamentals to Physics application
por: Tsaklidis, Ilias
Publicado: (2023) -
Predicting the performance of a Graph Neural Network for Particle-Flow reconstruction using (Quantum-)SVR
por: Garcia Amboage, Juan Pablo
Publicado: (2022) -
Reinforcement learning and its applications at CERN
por: Bunino, Matteo
Publicado: (2023)