Cargando…
Accelerating hyperparameter optimization using performance prediction on a heterogeneous HPC system
<!--HTML--><p>Training and hyperparameter optimization (HPO) of deep learning-based (DL) AI models is often compute resource intensive and calls for the use of large-scale distributed resources as well as scalable and resource efficient hyperparameter search and evaluation algorithms. In...
Autor principal: | Garcia Amboage, Juan Pablo |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2865381 |
Ejemplares similares
-
HPC and CERN: Integration and Challenges
por: Southwick, David Charles
Publicado: (2023) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Trends in HPC and Data Center Power, Packaging, and Cooling
por: Patterson, Michael K.
Publicado: (2016) -
Predicting the performance of a Graph Neural Network for Particle-Flow reconstruction using (Quantum-)SVR
por: Garcia Amboage, Juan Pablo
Publicado: (2022) -
Hyperparameter optimization of data-driven AI models on HPC systems
por: Wulff, Eric, et al.
Publicado: (2023)