Cargando…

Needs, trends, and advances in scintillators for radiographic imaging and tomography

Scintillators are important materials for radiographic imaging and tomography (RadIT), when ionizing radiations are used to reveal internal structures of materials. Since its invention by Röntgen, RadIT now come in many modalities such as absorption-based X-ray radiography, phase contrast X-ray imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhehui, Dujardin, Christophe, Freeman, Matthew S., Gehring, Amanda E., Hunter, James F., Lecoq, Paul, Liu, Wei, Melcher, Charles L., Morris, C.L., Nikl, Martin, Pilania, Ghanshyam, Pokharel, Reeju, Robertson, Daniel G., Rutstrom, Daniel J., Sjue, Sky K., Tremsin, Anton S., Watson, S.A., Wiggins, Brenden W., Winch, Nicola M., Zhuravleva, Mariya
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TNS.2023.3290826
http://cds.cern.ch/record/2866629
_version_ 1780978105481953280
author Wang, Zhehui
Dujardin, Christophe
Freeman, Matthew S.
Gehring, Amanda E.
Hunter, James F.
Lecoq, Paul
Liu, Wei
Melcher, Charles L.
Morris, C.L.
Nikl, Martin
Pilania, Ghanshyam
Pokharel, Reeju
Robertson, Daniel G.
Rutstrom, Daniel J.
Sjue, Sky K.
Tremsin, Anton S.
Watson, S.A.
Wiggins, Brenden W.
Winch, Nicola M.
Zhuravleva, Mariya
author_facet Wang, Zhehui
Dujardin, Christophe
Freeman, Matthew S.
Gehring, Amanda E.
Hunter, James F.
Lecoq, Paul
Liu, Wei
Melcher, Charles L.
Morris, C.L.
Nikl, Martin
Pilania, Ghanshyam
Pokharel, Reeju
Robertson, Daniel G.
Rutstrom, Daniel J.
Sjue, Sky K.
Tremsin, Anton S.
Watson, S.A.
Wiggins, Brenden W.
Winch, Nicola M.
Zhuravleva, Mariya
author_sort Wang, Zhehui
collection CERN
description Scintillators are important materials for radiographic imaging and tomography (RadIT), when ionizing radiations are used to reveal internal structures of materials. Since its invention by Röntgen, RadIT now come in many modalities such as absorption-based X-ray radiography, phase contrast X-ray imaging, coherent X-ray diffractive imaging, high-energy X- and $\gamma-$ray radiography at above 1 MeV, X-ray computed tomography (CT), proton imaging and tomography (IT), neutron IT, positron emission tomography (PET), high-energy electron radiography, muon tomography, etc. Spatial, temporal resolution, sensitivity, and radiation hardness, among others, are common metrics for RadIT performance, which are enabled by, in addition to scintillators, advances in high-luminosity accelerators and high-power lasers, photodetectors especially CMOS pixelated sensor arrays, and lately data science. Medical imaging, nondestructive testing, nuclear safety and safeguards are traditional RadIT applications. Examples of growing or emerging applications include space, additive manufacturing, machine vision, and virtual reality or `metaverse'. Scintillator metrics such as light yield and decay time are correlated to RadIT metrics. More than 160 kinds of scintillators and applications are presented during the SCINT22 conference. New trends include inorganic and organic scintillator heterostructures, liquid phase synthesis of perovskites and $\mu$m-thick films, use of multiphysics models and data science to guide scintillator development, structural innovations such as photonic crystals, nanoscintillators enhanced by the Purcell effect, novel scintillator fibers, and multilayer configurations. Opportunities exist through optimization of RadIT with reduced radiation dose, data-driven measurements, photon/particle counting and tracking methods supplementing time-integrated measurements, and multimodal RadIT.
id cern-2866629
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28666292023-10-03T15:53:11Zdoi:10.1109/TNS.2023.3290826http://cds.cern.ch/record/2866629engWang, ZhehuiDujardin, ChristopheFreeman, Matthew S.Gehring, Amanda E.Hunter, James F.Lecoq, PaulLiu, WeiMelcher, Charles L.Morris, C.L.Nikl, MartinPilania, GhanshyamPokharel, ReejuRobertson, Daniel G.Rutstrom, Daniel J.Sjue, Sky K.Tremsin, Anton S.Watson, S.A.Wiggins, Brenden W.Winch, Nicola M.Zhuravleva, MariyaNeeds, trends, and advances in scintillators for radiographic imaging and tomographyphysics.ins-detDetectors and Experimental TechniquesScintillators are important materials for radiographic imaging and tomography (RadIT), when ionizing radiations are used to reveal internal structures of materials. Since its invention by Röntgen, RadIT now come in many modalities such as absorption-based X-ray radiography, phase contrast X-ray imaging, coherent X-ray diffractive imaging, high-energy X- and $\gamma-$ray radiography at above 1 MeV, X-ray computed tomography (CT), proton imaging and tomography (IT), neutron IT, positron emission tomography (PET), high-energy electron radiography, muon tomography, etc. Spatial, temporal resolution, sensitivity, and radiation hardness, among others, are common metrics for RadIT performance, which are enabled by, in addition to scintillators, advances in high-luminosity accelerators and high-power lasers, photodetectors especially CMOS pixelated sensor arrays, and lately data science. Medical imaging, nondestructive testing, nuclear safety and safeguards are traditional RadIT applications. Examples of growing or emerging applications include space, additive manufacturing, machine vision, and virtual reality or `metaverse'. Scintillator metrics such as light yield and decay time are correlated to RadIT metrics. More than 160 kinds of scintillators and applications are presented during the SCINT22 conference. New trends include inorganic and organic scintillator heterostructures, liquid phase synthesis of perovskites and $\mu$m-thick films, use of multiphysics models and data science to guide scintillator development, structural innovations such as photonic crystals, nanoscintillators enhanced by the Purcell effect, novel scintillator fibers, and multilayer configurations. Opportunities exist through optimization of RadIT with reduced radiation dose, data-driven measurements, photon/particle counting and tracking methods supplementing time-integrated measurements, and multimodal RadIT.arXiv:2212.10322LA-UR-22-32994oai:cds.cern.ch:28666292022-12-20
spellingShingle physics.ins-det
Detectors and Experimental Techniques
Wang, Zhehui
Dujardin, Christophe
Freeman, Matthew S.
Gehring, Amanda E.
Hunter, James F.
Lecoq, Paul
Liu, Wei
Melcher, Charles L.
Morris, C.L.
Nikl, Martin
Pilania, Ghanshyam
Pokharel, Reeju
Robertson, Daniel G.
Rutstrom, Daniel J.
Sjue, Sky K.
Tremsin, Anton S.
Watson, S.A.
Wiggins, Brenden W.
Winch, Nicola M.
Zhuravleva, Mariya
Needs, trends, and advances in scintillators for radiographic imaging and tomography
title Needs, trends, and advances in scintillators for radiographic imaging and tomography
title_full Needs, trends, and advances in scintillators for radiographic imaging and tomography
title_fullStr Needs, trends, and advances in scintillators for radiographic imaging and tomography
title_full_unstemmed Needs, trends, and advances in scintillators for radiographic imaging and tomography
title_short Needs, trends, and advances in scintillators for radiographic imaging and tomography
title_sort needs, trends, and advances in scintillators for radiographic imaging and tomography
topic physics.ins-det
Detectors and Experimental Techniques
url https://dx.doi.org/10.1109/TNS.2023.3290826
http://cds.cern.ch/record/2866629
work_keys_str_mv AT wangzhehui needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT dujardinchristophe needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT freemanmatthews needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT gehringamandae needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT hunterjamesf needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT lecoqpaul needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT liuwei needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT melchercharlesl needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT morriscl needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT niklmartin needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT pilaniaghanshyam needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT pokharelreeju needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT robertsondanielg needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT rutstromdanielj needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT sjueskyk needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT tremsinantons needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT watsonsa needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT wigginsbrendenw needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT winchnicolam needstrendsandadvancesinscintillatorsforradiographicimagingandtomography
AT zhuravlevamariya needstrendsandadvancesinscintillatorsforradiographicimagingandtomography