Cargando…
Quantum Machine Learning for $b$-jet charge identification
Machine Learning algorithms are playing a fundamental role in solving High Energy Physics tasks. In particular, the classification of hadronic jets at the Large Hadron Collider is suited for such types of algorithms, and despite the great effort that has been put in place to tackle such a classifica...
Autor principal: | Zuliani, Davide |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.414.0231 http://cds.cern.ch/record/2866640 |
Ejemplares similares
-
Quantum machine learning in the latent space of high energy physics events
por: Anna Woźniak, Kinga, et al.
Publicado: (2023) -
Comparing quantum and classical machine learning for Vector Boson Scattering background reduction at the Large Hadron Collider
por: Cugini, Davide, et al.
Publicado: (2023) -
Quantum Angle Generator for Image Generation
por: Florian, Rehm, et al.
Publicado: (2022) -
On protocols for increasing the uniformity of random bits generated with noisy quantum computers
por: Combarro, Elías F, et al.
Publicado: (2021) -
Towards a European quantum network
por: Ribezzo, D, et al.
Publicado: (2022)