Cargando…
Triggering Dark Showers with Conditional Dual Auto-Encoders
Auto-encoders (AEs) have the potential to be effective and generic tools for new physics searches at colliders, requiring little to no model-dependent assumptions. New hypothetical physics signals can be considered anomalies that deviate from the well-known background processes generally expected to...
Autores principales: | Anzalone, Luca, Chhibra, Simranjit Singh, Maier, Benedikt, Chernyavskaya, Nadezda, Pierini, Maurizio |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2866743 |
Ejemplares similares
-
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023)