Cargando…
Trainability barriers and opportunities in quantum generative modeling
Quantum generative models, in providing inherently efficient sampling strategies, show promise for achieving a near-term advantage on quantum hardware. Nonetheless, important questions remain regarding their scalability. In this work, we investigate the barriers to the trainability of quantum genera...
Autores principales: | Rudolph, Manuel S., Lerch, Sacha, Thanasilp, Supanut, Kiss, Oriel, Vallecorsa, Sofia, Grossi, Michele, Holmes, Zoë |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2866746 |
Ejemplares similares
-
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Conditional Born machine for Monte Carlo event generation
por: Kiss, Oriel, et al.
Publicado: (2022) -
Sampling the Riemann-Theta Boltzmann Machine
por: Carrazza, Stefano, et al.
Publicado: (2018) -
Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging
por: de Schoulepnikoff, Paulin, et al.
Publicado: (2023)